Patricio, PedroR. Leal, CatarinaDuarte, JorgeJanuário, Cristina2016-04-132016-04-132015-10-29PATRÍCIO, Pedro; [et al] - Rheology of the cytoskeleton as a fractal network. Physical Review E. ISSN 1539-3755. Vol. 92, N.º 4 (2015), pp. 040702-1-040702-51539-37551550-2376http://hdl.handle.net/10400.21/5967We model the cytoskeleton as a fractal network by identifying each segment with a simple Kelvin-Voigt element with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel, which may support stress, without relaxing. By considering a very simple regular self-similar structure of segments in series and in parallel, in one, two, or three dimensions, we are able to express the viscoelasticity of the network as an effective generalized Kelvin-Voigt model with a power law spectrum of retardation times L similar to tau(alpha). We relate the parameter alpha with the fractal dimension of the gel. In some regimes ( 0 < alpha < 1), we recover the weak power law behaviors of the elastic and viscous moduli with the angular frequencies G' similar to G" similar to w(alpha) that occur in a variety of soft materials, including living cells. In other regimes, we find different power laws for G' and G".engSoft glassy materialsLiving cellsRheology of the cytoskeleton as a fractal networkjournal article10.1103/PhysRevE.92.040702