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Abstract

Magnesium alloys are greatly appreciated due to their high strength to weight

ratio, stiffness, and low density; however, they can exhibit complex types of

cyclic plasticity like twinning, de‐twinning, or Bauschinger effect. Recent stud-

ies indicate that these types of cyclic plastic deformations cannot be fully char-

acterized using the typical tools used in cyclic characterization of steels and

aluminium alloys; thus, it is required new approaches to fully capture their

cyclic deformation and plasticity. This study aims to propose and evaluate a

phenomenological cyclic elastic‐plastic approach designed to capture the cyclic

deformation of magnesium alloys under multiaxial loading conditions. Series

of experimental tests were performed to characterize the cyclic mechanical

behaviour of the magnesium alloy AZ31BF considering proportional loadings

with different strain amplitude ratios and a nonproportional loading with a

45° phase shift. The experimental results were modulated using polynomial

functions in order to implement a cyclic plasticity model for the AZ311BF

based on the phenomenological approach proposed. Results show good corre-

lations between experiments and estimates.
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1 | INTRODUCTION

Nowadays, industry in general is following with great
attention the magnesium alloys' research. The positive
results achieved by the scientific community have created
expectations to improve existing products and create new
ones. One example is the automotive industry which
from the 50s, until now, has been one of the biggest

players in this research field. Despite the improvements
in fuel consumption and vehicle performance be an eco-
nomic approach and a driving force from the customer
side, the reduction of fuel consumption is also motivated
by legislative rules to reduce primary energy consump-
tion, and environmental impacts; thus, it starts to be a
mandatory requirement. The combination of high
strength and low weight remains a paramount goal that
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continues under pursuit by mechanical engineers in
order to fulfil the transportation industry requirements.
Until now, magnesium alloys are the structural materials
that better fulfil this goal. The weight reduction requires a
compromise between the material properties and geome-
try of structural components; under this equilibrium, a
full understanding of cyclic, monotonic, and elastic‐
plastic properties is needed in all loading regimens.

Cyclic plasticity is quite different from plasticity under
static loadings. Materials when subjected to cyclic loads
tend to modify their mechanical properties, and due to
that, stress states of mechanical components can be quite
different from the ones considered in design stages if
cyclic plasticity is not taken into account.1

Mechanical components and structures are generally
subjected to multiaxial loadings with variable amplitude;
therefore, multiaxial cyclic plasticity models are needed
in their design.2 However, constitutive plasticity models3,4

of commercial finite element packages have as input uni-
axial cyclic curves to set up their internal plasticity rou-
tines; this means that the yield functions, hardening,
and flow rules commonly used in these packages are not
suitable to simulate multiaxial cyclic plasticity, which
depends on many factors such as the stress ratio between
normal and shear stresses or nonproportional effects. This
unsuitability increases for materials with nonstandard
cyclic behaviour, specially magnesium alloys.

Albinmusa2,5,6 reinforced this idea and stated that it is
needed anisotropic plasticity models to cover the cyclic
behaviour of magnesium alloys. It is impossible to esti-
mate this anisotropy using only the uniaxial stress‐strain
relation as found in constitutive models. From experi-
ments, it was found out that magnesium alloys have a
nonlinear cyclic behaviour, which is dependent on many
factors such as strain rate and microstructure deforma-
tion mechanisms.1 Therefore, instead of using the uniax-
ial stress‐strain relation under cyclic loadings as usually
is, it is necessary to use several different types of cyclic
loadings to map the material cyclic anisotropy.

There are very few works in literature that focus the
multiaxial stress‐strain relations for magnesium alloys,6-
11 but all of them stated that the magnesium alloys cyclic
behaviour is quite different from steels or even from alu-
minium alloys. One evidence of this fact can be seen in
the typical asymmetric hysteresis loops found in magne-
sium alloys, where the cyclic yield stress at compression
is quite different from the one in tension; also, the rate
variation of these values is also different.12,13

Commercial finite element packages are not able to
modulate the anisotropy found in magnesium alloys; they
consider that ductile materials have the same yield stress
in tension and compression for a given strain level, which
is true for steels and aluminium alloy but not true for

magnesium alloys.2,7 Moreover, back stresses in tension
and compression have also different absolute values in
magnesium alloys for a given strain level.13 The complex-
ity increases when it is considered in multiaxial loading
conditions, where yield stresses, hardening, and flow
rules vary differently according to the loading type and
load level.14

Moreover, in literature, it can be found studies indicat-
ing that equivalent stress/strains approaches do not have
into account important effects such as the material
strength dependence on the loading direction; therefore,
it is possible to obtain the same equivalent stress in all
loading directions. Nevertheless, the cyclic response of
magnesium alloys is different according to the loading
direction.15 In this sense, equivalent stress/strains used
in hardening rules and flow rules must capture the mate-
rial anisotropy to estimate their cyclic behaviour under
multiaxial loading conditions. One way to do that is to
adopt a phenomenological approach and perform specific
experimental tests under multiaxial loading conditions to
obtain a map of the material cyclic response in order to
create or to improve these rules.14,16

There are three types of cyclic plasticity models,
namely: constitutive, phenomenological, and
constitutive‐phenomenological models. Constitutive
models are based on the solid mechanics' approach, and
they use very few experimental data, ie, typical mechani-
cal properties are used to estimate the material cycle
response.17 This approach is very appreciated; however,
it has strong limitations in magnesium alloys and aniso-
tropic materials. On the other hand, phenomenological
plasticity models are mainly based on experiments. These
models should cover the basic premises of constitutive
models, ie, must capture an experimental yield function,
hardening, and flow rules. Both approaches try to esti-
mate the same cyclic behaviour but following different
ways. Constitutive models cover a wide range of materials
and do not need special experimental programs, but for
anisotropic materials they a have limited performance.
Therefore, it is advised phenomenological cyclic models
to model the cyclic behaviour of anisotropic materials
including magnesium alloys. The constitutive‐
phenomenological models make use of both approaches,
usually developed to integrate the information given by
phenomenological models into constitutive models.

This work presents a phenomenological elastic‐plastic
approach to implement phenomenological models for
anisotropic materials. This approach is based on experi-
mental stress‐strain relations under a wide range of cyclic
strains under uniaxial and specific multiaxial loading
conditions. The proposed approach is applied to the mag-
nesium alloy AZ31BF in order to implement its phenom-
enological elastic‐plastic cyclic model.
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FIGURE 1 Magnesium alloy hysteresis

loop typically obtained from the axial

channel of a biaxial loading [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 2 Specimen test geometry and

dimensions

FIGURE 3 Loading paths tested in

strain control: A, Case 1, PT; B, Case 2, PS;

C, Case 3, PP30; D, Case 4, PP45; E, Case

5, PP60; and, F, Case 6, OP45
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FIGURE 4 Experimental hysteresis loops for A, Case 1; B, Case 2; C, Case 3—axial component; D, Case 3—shear component; E, Case 4—

Axial component; F, Case 4—shear component
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2 | PHENOMENOLOGICAL
ELASTIC ‐PLASTIC APPROACH

The cyclic mapping of magnesium alloys is a feasible way
to overcome the limitations found in constitutive cyclic
plasticity models. A phenomenological approach like
the one presented in Section 2.1 allows to implement
models that mimic the cyclic response of anisotropic
materials which can be implemented in an external rou-
tine linked to a finite element package instead of using
internal constitutive models offered by these packages.
In this way, the material cyclic behaviour can be cyclic
updated with this external routine according to the cyclic
loading features.

The objective of the proposed phenomenological
elastic‐plastic approach is to set several steps to achieve
a numeric model able to estimate the relation between

stresses and strains in uniaxial and multiaxial loading
conditions for a total strain range with practical applica-
tions in mechanical design.

2.1 | Phenomenological approach

From experiments, it was found that the AZ31 magne-
sium alloy hysteresis loops can be approximated with
very acceptable results using a third‐degree polynomial
function for any value of total strain.

In order to obtain these functions, it is considered six
specific points on a hysteresis loop, see Figure 1. For the
left hysteresis branch, the polynomial function is
obtained by interpolation using the experimental data
obtained at points 4, 5, 6, and 1. Similarly, the polynomial
function of the hysteresis branch at right is obtained

FIGURE 5 Experimental hysteresis loops for A, and B, Case 5, and C, and D, Case 6
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using the experimental data of points 4, 3, 2, and 1. The
experimental data of these points (1 to 6) vary accordingly
to the total strain and strain amplitude ratio given by
λ = γ/ε. With these polynomials, it is possible to mimic
the magnesium cyclic plastic factors such as twinning,
de‐twinning, and slip effects at each total strain level
and strain amplitude ratios. The functions P1(εsl, λ) and
P4(εsl,λ) depicted in Figure 1 estimate two yield stresses
regarding the right and left side of the hysteresis loop
for a given maximum total strain. The functions P2(εsl,λ)
and P5(εsl,λ) estimate the plastic strains inherent to the
maximum total strain, and the functions P3(εsl, λ) and
P6(εsl,λ) estimate the back stresses.

Under biaxial loading conditions, it is obtained two
hysteresis loops, one from the axial loading component
and the other one from the shear loading. Therefore, it
is obtained two different hysteresis loops which are
dependent on each other. This dependence is captured
by the strain amplitude ratio given by the shear strain

to axial strain ratio (λ = γ/ε), which is the angle in radians
between the axial and shear strains amplitudes. The biax-

ial strain level is given byεsl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2t þ γ2t
p

, which is a mea-
sure that can be directly related with the strain amplitude
ratio. Thus, the axial and shear hysteresis loops of a biax-
ial loading for a given total strain can be given by Equa-
tion (1) for the axial loading component and
Equation (2) for the shear one.

σright εtð Þ ¼ aεt ε
3
t þ bεt ε

2
t þ cεt εt þ dεt

σleft εtð Þ ¼ eεt ε
3
t þ f εt ε

2
t þ gεt εt þ hεt

(1)

τright γtð Þ ¼ aγtγ
3
t þ bγtγ

2
t þ cγtγt þ dγt

τleft γtð Þ ¼ eγtγ
3
t þ f γtγ

2
t þ gγtγt þ hγt

(2)

The polynomial constants of Equations (1) and (2) are
obtained with the Matlab polyfit function, which has as
input the output values of the P functions described in
Equations (3) to (6).

FIGURE 6 P point variation with total strain variation A, and B, Case 1; C, and D, Case 2
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aεt ; bεt ; cεt ; dεt½ � ¼ polyfit Paxial;1 εsl; λð Þ;Paxial;2 εsl; λð Þ;�

Paxial;3 εsl; λð Þ; Paxial;4 εsl; λð Þ� (3)

eεt ; f εt ; gεt ;hεt

� � ¼ polyfit Paxial;4 εsl; λð Þ;Paxial;5 εsl; λð Þ;�

Paxial;6 εsl; λð Þ;Paxial;1 εsl; λð Þ� (4)

aγt ; bγt ; cγt ; dγt
� � ¼ polyfit Pshear;1 εsl; λð Þ; Pshear;2 εsl; λð Þ;�

Pshear;3 εsl; λð Þ; Pshear;4 εsl; λð Þ� (5)

eγt ; fγt ; gγt ; hγt

h i

¼ polyfit Pshear;4 εsl; λð Þ;Pshear;5 εsl; λð Þ;�

Pshear;6 εsl; λð Þ;Pshear;1 εsl; λð Þ� (6)

Based on experiments, the P functions have the follow-
ing shape under multiaxial loading conditions, see Equa-
tions (7) and (8):

Paxial;i εsl; λð Þ ¼ ai þ biεsl þ ciλþ diε2sl þ eiλ2 þ f iεslλ
þ giε

3
sl þ hiλ3 þ iiεslλ2 þ jiε

2
slλ (7)

Pshear; j εsl; λð Þ ¼ aj þ bjεsl þ cjλþ djε2sl þ ejλ2 þ f jεslλ
þ gjε

3
sl þ hjλ3 þ ijεslλ2 þ jjε

2
slλ (8)

where constants with subscript i and j for axial and shear
are obtained through numeric regressions of experimen-
tal stress‐strain data. The subscript i ranges from 1 to 6
and represents the six specific points identified in

FIGURE 7 P point variation with strain variation for Case 3

COSTA ET AL.2474



Figure 1 for the axial hysteresis loop, in the same way j
ranges from 1 to 6 and represents the six specific points
for the shear hysteresis loop of a given loading.

3 | MATERIALS AND METHODS

3.1 | AZ31B‐F material

The material used in this study was the AZ31B‐F magne-
sium alloy. This material was acquired in the form of rods
with 26 mm of diameter and 1000 mm in length. The rods
were extruded in a temperature ranging from 360°C to
382°C with an extrusion speed of 50.8 mm/s. The applied
extrusion ratio was about six, and after extrusion the alloy
was air quenched. The tested specimens were machined
in the extrusion/longitudinal direction and polished
using decrease sandpaper grit to reach a mirror type

finish. The specimen geometry and dimensions are pre-
sented in Figure 2. A biaxial servo‐hydraulic testing
machine was used to perform the cyclic tests under strain
control with R = −1; the loading shape in each loading
channel (axial and shear) was in sinusoidal waveform.
Several total strain amplitudes were considered and
obtained at the same strain rate. The strain rate was
about 0.003 [1/s], which is a value lower than the limit,
from which the strain rate affects the cyclic strain behav-
iour of magnesium alloys. The strain results were mea-
sured with a biaxial extensometer with a gauge length
equal to 12.5 mm.

The strain‐controlled tests were performed considering
total strains ranging from pure elastic to high cyclic plas-
ticity, where collapse occurs at very few loading cycles.
The total strains considered were the following: 0.1%,
0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, and
1.14%. The experiments performed covers a realistic

FIGURE 8 P point variation with strain variation for the Case 4
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stress‐strain loading regime, ie, the need of cyclic
mechanical behaviour for total strains higher that 1.14%
is not very common in mechanical design; therefore, the
total strain range considered is adequate for design activ-
ities. Moreover, the total strain values and loading paths
were selected in order to perform valid numeric regres-
sions. Because the phenomenological model is based on
experiments; thus, it will be only valid within the total
strain range considered, in this case from 0.1% to 1.14%.
A total of 12 specimens were tested, two specimens for
each loading case described in Figure 3. The tests were
performed in an incremental‐step approach where load-
ing blocks of 10 cycles (one block per strain level) were
applied until reach rupture. During experiments, each
cyclic test was considered concluded at the specimen total
separation. The average total number of loading cycles at
rupture for each loading case described in Figure 3 was

NfCase1 = 63, NfCase2 = 76, NfCase3 = 94, NfCase4 = 109,
NfCase5 = 103, and NfCase6 = 57.

3.2 | Biaxial loading paths

To evaluate the AZB‐F mechanical behaviour, six biaxial
loading paths, described in Figure 3, were considered.
These loading paths were previously studied by the pres-
ent authors to capture anisotropic fatigue proprieties.15

The first loading case, Case 1, is a pure uniaxial tensile
test, case PT. The second one, Case 2, is a pure shear load-
ing, named as case PS. Cases 3, 4, and 5 are proportional
loadings with SAR equal to 30°, 45°, and 60°, respectively.
Finally, Case 6 is a nonproportional loading case, with a
SAR equal to 45° and a phase shift equal to 90°. All these
loading paths were implemented in experiments and

FIGURE 9 P point variation with strain variation for Case 5
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considered in the developed phenomenological approach.
The specimens were tested at room temperature and
ended when the specimens were totally separated.

4 | RESULTS AND DISCUSSION

Figure 4A,B presents the uniaxial results for the hystere-
sis loops in pure axial and pure torsion loading condi-
tions, ie, Case 1 (PT) and Case 2 (PS). For the PT
loading case, Figure 4A, it can be concluded that the hys-
teresis loops are not symmetric, having different plastic
strains in tension and compression. Moreover, the axial
tension, for the same amplitude of total strain, is different
from the compression one. Also, the plastic strains and
stresses in tension and compression vary nonlinearly.
These results show the presence of six independent

parameters in a magnesium alloy's hysteresis loop that
are independent from each other, namely the P points
presented in Equations (7) to (8).

Figure 4B shows the hysteresis loops for the AZ31B‐F
magnesium alloy in pure torsion being quite symmetric,
which is a mechanical behaviour very different from
the axial one, ie, the shear stresses have the same
absolute value for the same shear strain limits (considering
a strain‐control approach). Moreover, the shear plastic
strains are also very similar, the difference between
plastic strain (left‐right) that can be seen in Figure 4B
derived from the direction of the first loading cycle.

Figure 4C,D shows the axial and shear hysteresis loops
resulted from a proportional biaxial loading with a SAR
equal to 30° (Case 3). In this case, the axial strain compo-
nent is bigger than the shear one, resulting in shear stress
amplitude lower than the axial one. Therefore, the axial

FIGURE 10 P point variation with strain variation for Case 6
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deformation and inherent plastic deformation govern the
deformation behaviour. Figure 4E,F shows the stress
strain results for Case 4, a biaxial loading with SAR equal
to 45°, where the maximum amplitude of the axial and
shear strains are equal. Despite the equality between
shear and axial strain amplitudes, the resulted stresses
have amplitudes very different. For instance, at 0.5%
shear strain, the respective shear stress amplitude is
50 MPa, but the axial strain at 0.5% leads to 160 MPa.
Moreover, the axial stress is quite different in compres-
sion and tension, even for the same strain amplitude in
tension and compression. The shear strain hysteresis
loops for Case 4, Figure 4F, also show a symmetric pat-
tern, which means that the shear mechanical response
of AZ31B‐F is not affected by the stress amplitude ratio
(SAR), because it has the same pattern found in the pure
shear loading case (uniaxial). Comparing both Cases 3

and 4, one can conclude that increasing the SAR value
reduces the axial plastic strain and increases the shear
one; therefore, the SAR increase implies a predominance
of shear effects.

Figure 5A,B presents the experimental results for the
proportional loading with SAR equal to 60°. It is quite
evident that the shear hysteresis loops have bigger plastic
strains than the axial ones. These results confirm that
increasing the SAR values decreases the axial strain com-
ponent and increases the shear one; therefore, the defor-
mation mechanisms and the inherent stresses are very
different for each SAR. Thus, the typical equivalent stress
concept, such as the von Mises equivalent stress/strain, is
unsuitable to modulate this type of deformation effects,
because equivalent stress/strain approaches are indepen-
dent of the loading direction. For example, it can be
obtained the same von Mises equivalent stress for all

FIGURE 11 P1 and P2 variation with SAR and strain variation—Proportional loadings
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possible SARs considered here, ie, for all loading direc-
tions, but each SAR has different deformation behaviour
as is seen in this work.

Clearly, nonproportional loadings create a different
loading pattern in the material elastic‐plastic cyclic
behaviour. Comparing proportional and nonproportional
loadings with the same SAR (λ = 45º) and same maxi-
mum loading amplitudes, see Figures 4C,D and 5C,D, it
can be concluded that the plastic strains and back stresses
have quite different values in each loading path. These
two parameters, plastic strain and back stresses, are two
indicators of the loading type effect on the material
response to the loading path. Correlating the stabilized
hysteresis loops shown in Figures 4 and 5 with the
AZ31B‐F monotonic curve in axial and shear, it was pos-
sible to conclude in all loading cases, that for the axial
loading component, there is a hardening in tension and

a slight softening in compression, and for the shear load-
ing component it was shown a slight hardening in both
loading directions.

Figure 6 shows the variation of the P points for Case1
and Case 2. The curves represent the P point variation in
function of strain level. Figure 6A presents the stresses in
each hysteresis loop for each stress amplitude level. In
Figure 6A,B, the graph's abscissa represents the axial
strain amplitude of the cyclic load, which in experiments
takes negative and positive values. Therefore, tensile
stresses result from positive strains and compressive
strains result from negatives stresses. To better interpret
and correlate the results of compression and tension
loads, it is considered here that the compressive strains
and inherent stresses are positive. In this way, it is possi-
ble to verify for loading case PT (Case 1) that the stress‐
strain relation in tension and compression is almost equal

FIGURE 12 P3 and P4 variation with SAR and strain variation
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for total strains below 0.4%. But, beyond that value, the
cyclic elastic‐plastic behaviour is quite different in ten-
sion and compression, see Figure 6A,B.

Each line presented in these graphs (see Figures 6
to 12) represents the variation of the P points with the
strain amplitude level variation (total strain). Making a
fitting of these experimental results, it allows to get func-
tions that capture the P point variation according to the
total strain amplitude; therefore, in this way, it becomes
possible to estimate any hysteresis loop.

Figure 6C,D presents the results for the Case 2, the
pure shear loading case, ie, PS. Observing these results,
and contrary to Case 1, PT, the stresses inherent to the
shear stress amplitudes are always different in all shear
strain levels. The same can be observed for the back‐stress
evolution as well as plastic strain. This can be explained
by the first loading direction of the shear strain, where

the first direction of the plastic shear strain influences
the overall elastic‐plastic deformation.

Figure 7 presents the results for the loading case PP30,
Case 3, previously identified in Figure 3. Here, it is pre-
sented a proportional loading case with SAR equal to 30°.
Figure 7A,C shows the results for the axial component of
the proportional loading, and Figure 7B,D shows the
shear one.

Similarly to the pattern observed in PT loading case,
the PP30 axial elastic‐plastic stresses are quite similar
until reach 0.4% of total axial strain. Surprisingly, the
shear stress evolution has the same stress values in both
loading directions; the same can be said for plastic
strains.

It can be concluded that the hysteresis loops of the
shear component of the proportional loading path
(PP30) are symmetric for all strain levels considered.

FIGURE 13 P5 and P6 variation with SAR and strain variation
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Figure 8 shows the cyclic behaviour of the magnesium
alloy, AZ3B‐F, under a proportional loading path with
SAR equal to 45°. The same pattern found in PP30 could
be seen here in PP45 loading case; the compression and
tension begin to have different stresses beyond the 0.4%
shear strains. The shear hysteresis loops also have a sym-
metric trend, as seen in the previous loading paths. In
this loading path, PP45, the axial and shear strains have
the same amplitude, but the stresses inherent to these
amplitudes are quite different. For instance, for 0.4% of
total strain, the yield stress in axial is about 140 MPa,
and the yield stress in shear is about 50 MPa.

Figure 9 shows the results for the PP60 loading case,
which is a proportional loading with a SAR equal to
60°. In this case, the shear component is greater than
the axial one. The axial cyclic pattern is maintained in
this loading path (PP60), but the shear loading starts to
show shear strain dominance in the cyclic plastic
behaviour.

For instance, Figure 9B has the same pattern seen in
the pure shear strain loading case, Case 1, PS, ie, the
two strain‐stress curves (two torsion directions) are not
coincident; in this case, the first loading direction domi-
nates the cyclic elastic‐plastic behaviour.

Figure 10 shows the results for the nonproportional
loading case; these results are lightly different from the

PP45 loading case. The nonproportional cyclic deforma-
tion has a huge influence in the stress‐strain pattern,
but in terms of back stresses and plastic strain values,
the differences from PP45 loading case are not so evident.

Figure 11 shows the variation of points P1 and P2 for
all proportional loading cases considered here. It is pre-
sented the P1 and P2 variation for the axial and shear
total strain at each proportional loading case. Because
the variations of P1 and P2 are not coincident for all load-
ing paths, it can be concluded that the SAR variation has
an influence in the hysteresis loops and in the inherent
cyclic elastic‐plastic behaviour.

Moreover, in the axial direction, the P1 variation is
quite similar for all loading paths at total strains below
0.4%. However, for the P2 values, only below 0.2%, it
can be considered such simplification.

Figure 12 shows the variation of P points P3 and P4.
The P3 evolution in the shear component is quite differ-
ent in all loading paths, see Figure 12B. The P3 axial evo-
lution until reaches 0.4% has a similar pattern, but for the
shear one it seems that there is no pattern. For P4,
Figure 12C,D, it can be considered that below 0.4% of
total strain, both axial and shear have similar evolution
pattern in both loading paths.

Figure 13 presents the experimental results for P
points P5 and P6. It seems, as seen in the other P point

FIGURE 14 P point variation in Case 4 and Case 6
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analysis, that they can be fairly merged as one, but only
below of 0.4% of total strain, but beyond that value, they
present values completely different, for each loading case.

From these results, it can be concluded that magne-
sium hysteresis loops can be fairly estimated using the
uniaxial results if the total strain in shear and axial are
below the upper limit of 0.4%. For greater total strains,

this conclusion is not valid, and a multiaxial mapping
for the cyclic behaviour is needed.

Figure 14 presents a comparison between P points of
proportional and nonproportional loading paths, PP45
and OP45, respectively; both loading paths have a SAR
equal to 45°. The P points, of the shear loading compo-
nents, have an evolution very similar; however, it is in

TABLE 1 AZ31B‐F polynomial constants for the P functions for proportional loadings (axial component) valid for λ[0º; 90º] and εsl[0; 1]

Paxial,1(εsl, λ) Paxial,2(εsl, λ) Paxial,3(εsl, λ) Paxial,4(εsl, λ) Paxial,5(εsl, λ) Paxial,6(εsl, λ)

ai −0.03408 0.003106 −0.1717 −2.35533 0.008663 0.932681

bi 481.6159 −0.12443 −40.4912 523.3197 −0.07452 −8.05794

ci −0.0783 0.000192 0.163393 −1.38413 0.003737 1.102192

di −206.819 0.23118 134.2617 −379.461 0.406281 155.8362

ei −0.00448 1.86E − 05 0.005408 0.0718 −0.00021 −0.05726

f i −0.80869 0.001098 −0.38309 −3.55155 0.007819 1.267397

gi −90.706 0.433687 57.93164 100.9811 −0.13097 −119.972

hi 0.000124 −4.6E − 07 −0.00016 −0.00084 2.57E − 06 0.000676

ii −0.07011 6.69E − 05 0.025193 0.003224 −0.00016 −0.03934

ji 3.931702 −0.01128 −2.8987 1.435313 0.000804 1.018756

TABLE 2 AZ31B‐F polynomial constants for the P functions for proportional loadings (shear component) valid for λ[0º; 90º] and εsl[0~1]

Pshear,1(εsl, λ) Pshear,2(εsl, λ) Pshear,3(εsl, λ) Pshear,4(εsl, λ) Pshear,5(εsl, λ) Pshear,6(εsl, λ)

aj 2.177984 0.038377 4.57375 −25.3663 0.210432 25.51458

bj 59.35201 −0.17544 −17.7933 70.0056 −0.23946 −10.164

cj −0.4713 −0.00154 −0.2192 1.262069 −0.01213 −1.59249

dj −147.976 0.374491 59.83082 −106.496 0.200226 12.43844

ej 0.013494 1.92E − 05 0.00359 −0.01797 0.000207 0.028779

f j 2.867768 0.003991 0.417744 1.686582 0.010154 0.953978

gj 86.14576 −0.141 −35.9188 40.76676 0.008696 −1.96378

hj −9.4E − 05 −6.1E − 08 −1.8E − 05 7.46E − 05 −1.1E − 06 −0.00016

ij −0.01049 −5.0E − 05 −0.00508 −0.00596 −6.3E − 05 −0.00441

jj −1.05301 0.004585 0.349309 −0.32904 0.000738 −0.1774

TABLE 3 Polynomial constants for the P functions for proportional loadings

P1[MPa] P2[ε] P3[MPa] P4[MPa] P5[ε] P6[MPa]

Axial 181.90 0.05 17.34 150.57 0.13 38.64

Shear 33.19 0.10 12.41 34.40 0.09 10.28

aεt bεt cεt dεt eεt f εt gεt hεt

Axial 163.35 −85.1 275.8 38.64 −93.1 122.3 345 17.34

aγt bγt cγt dγt eγt f γt gγt hγt

Shear 122.63 −120.91 101.61 1027 37 051 131.12 109.27 12.4
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FIGURE 15 Correlation between estimations and experiments for cases: A,C,E, Case 3, and B,D,F, Case 4 (exp—experiments; H—

phenomenological model) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 16 Correlation between estimations and experiments for cases: A,C,E, Case 5, and B,D,F, Case 6 (exp—experiments; H—

phenomenological model) [Colour figure can be viewed at wileyonlinelibrary.com]
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the axial component that it can be found the greatest dif-
ferences, especially in points P3, P4, P5, and P6.

Therefore, from Figure 14, it can be concluded that the
phase shift effect in the cyclic deformation of the AZ31B‐
F magnesium alloy only influences the axial cyclic
response under OP45 loading paths.

The AZ31B‐F curves shown in Figures 6 to 9 were used
to obtain the polynomials constants presented in Equa-
tions (7) to (8). Tables 1 and 2 show these constants for
the proportional loadings considered in the phenomeno-
logical approach, ie, cases 1 to 5.

As example, Table 3 shows the results obtained to esti-
mate the hysteresis loops of loading Case 3 (SAR, λ = 30º)
at 0.6% of strain level (εsl). In rows 2 and 3 is shown the P
point values for this case, which are used to obtain the
third‐degree polynomials presented in rows 5 and 7.

Figures 15 and 16 show the correlation between the
developed phenomenological model, represented by the
letter H, and experiments. It was selected three values
for strain level in order to compare the results under
three levels of cyclic plasticity.

To make this analysis, it is presented the results in
stress space, where the axial stress vs shear stress is pre-
sented. Here, neither the shear stress nor the axial stress
results are affected by any factor as seen in the von Mises
stress space, for instance.

In the testing machine console, the strain‐time varia-
tion strictly follows the loading paths depicted in
Figure 3; thus, it would be expected that the inherent
stress variations should have the same loading path pat-
tern. However, from the AZ31B‐F experiments, it can be
concluded that the results are quite different from the
expected ones; much of this difference is related with
the magnesium cyclic plastic behaviour.

From the results presented in Figures 15 and 16, it can
be concluded that the developed model follows well the
proportional loading paths obtained by experiments; only
in Cases 3 and 5 at 1% of strain level it was found a slight
deviation from the experimental results, see Figures 15E
and 16E.

The advantage of the developed phenomenological
model comparatively to constitutive models is the possi-
bility to simulate the effect of the SAR in the material's
elastoplastic cyclic behaviour and consider other plastic
effects such as twinning and de‐twinning effects, for
instance. These effects became more relevant under
higher strain level values. Figure 16A,C,E presents the
results for Case 5, which have a SAR equal to 60°; in this
case, the shear strain is higher than the axial one. At 1%
of total strain level, the developed model has a slight devi-
ation in Case 3.

The nonproportional estimates displayed in Figures 15
and 16 were made considering the proportional estimates

of Case 4 (SAR 45°) and adding a 90° phase angle to the
axial and shear cyclic responses of Case 4. This approach
fails to follow the experimental results, only for a strain
level equal to 0.3%; the results were acceptable as seen in
Figure 16B, where the estimates almost follow the exper-
imental results. For 0.6% of total strain, the differences
between estimates and experiments start to increase,
where nonproportional hardening starts to be more
pronounced.

For 1.14% of total strain level, see Figure 16F, the
developed model estimates are inside of the experimental
loading path; in this case, the stress values are lower than
they should be indicating that the developed model does
not capture the magnesium's nonproportional hardening;
this evidence becomes more obvious with the increment
of the total strain level value. Based on these results, it
can conclude that the approach to estimate
nonproportional cyclic behaviour based on proportional
loadings, considering the same SAR in both proportional
and nonproportional loadings, can be fairly considered
for total strain level lower than 0.3%.

5 | CONCLUSIONS

In this work, it was presented a phenomenological
approach to model the cyclic behaviour of anisotropic
materials under uniaxial and multiaxial loading condi-
tions. The approach was applied to model the cyclic
behaviour of the AZ31B‐F magnesium alloy where an
experimental program comprising several proportional
loading paths and one nonproportional loading path
was carried out. Based on these experiments, the
AZ31B‐F cyclic behaviour was mapped by polynomial
functions where the relation between biaxial stresses,
total strains, plastic strains, and back stresses was modu-
lated. The SAR effect in the elastic‐plastic parameters
under proportional and nonproportional loadings was
analysed; also, a comparison between proportional and
nonproportional loadings with the same SAR was
analysed to infer about the effect of phase shift in the
AZ31B‐F cyclic behaviour. Results show that the experi-
mental hysteresis loops are also asymmetric under multi-
axial loading conditions, especially the ones from the
axial loading components; the asymmetry found in the
shear loading components came from the first loading
direction. The developed model shows limitations that
need to be overcome, ie, the lack of a parameter that
tunes nonproportional hardening for different SARs.
Despite this limitation, the developed model shows good
agreement with the experimental data under uniaxial
and proportional loadings, and the model captures very
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well the plastic strains and back stresses for a wide range
of loading conditions.
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