Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/3610
Título: Hyperspectral subspace identification
Autor: Bioucas-Dias, José M.
Nascimento, José M. P.
Palavras-chave: Dimensionality reduction
Hyperspectral imagery
Hyperspectral signal subspace identification by minimum error (HySime)
Hyperspectral unmixing
Linear mixture
Minimum mean square error (mse)
Subspace identification
Data: Ago-2008
Editora: IEEE
Citação: BIOUCAS-DIAS, José M.; NASCIMENTO, José M. P. - Hyperspectral Subspace Identification. IEEE Transactions on Geoscience and Remote Sensing. ISSN 0196-2892. Vol. 46, nr. 8 (2008), p. 2435-2445.
Resumo: Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
Peer review: yes
URI: http://hdl.handle.net/10400.21/3610
ISSN: 0196-2892
Versão do Editor: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556647&tag=1
Aparece nas colecções:ISEL - Eng. Elect. Tel. Comp. - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Hyperspectral Subspace Identificatio.pdf537,72 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.