Paper Formatting Template1

1 This template is adapted from several sources.
PREDICTING THE PRESENT AND FUTURE OF AQUAPONICS WITH GOOGLE TRENDS.

Dos-Santos, Maria José Palma Lampreia dos Santos;

ISCTE-IUL-DINÂMIA´CET, Escola Superior de Comunicação Social - ESCS-IPL- Instituto Politécnico de Lisboa, Lisbon, Portugal

Abstract

Aquaponics is an innovative scientific and professional area in Europe and across the world with increasing importance. However, despite the importance of aquaponics in Europe and in the world to promote safely and fresh foods, there is a gap because stakeholders, researchers and other professionals don’t really know the actual development and increasing of importance this activity in Europe despite the enormous contribution of the Aquaponics Hub from COST FA 1305. To overcome this problem and to know about the status, trends and importance of aquaponics searching in Europe we conduct this work. The main goal is to analyses the aquaponics and aquaponics related terms search through Google trends tool across the European countries where the Aquaponics Hub from COST FA 1305 where present from 2014 to the present, in order to analyses the path of aquaponics and the contribute done by the Action COST FA 1305 and related research.

The methodology includes univariate and econometric models based on google trends from 2014 to the present.

The results high line confirms the increasing trends of aquaponics and aquaponics related terms across the Europe and European countries belongs to COST FA 1305, but there are significant differences among countries. In general, the results per country show a real increasing after the countries becoming member of the present action of the COST action or an increasing during the Action, but there are differences among countries country. As well the increasing of scientific papers indexed in SCOPUS or Web of Science was increasing.

Keywords: ARIMA model; econometric model; google trends; aquaponics.

Introduction
Nowadays the increasing volumes of ‘big data’ reflecting various aspects of our present activities and represent a crucial new opportunity for scientists and experts to study the fundamental questions about the complex world we inhabit (Preis et al., 2013; Axtell, R. L. Zipf, 2001; King 2011; Vespignani, 2009; Perc, 2012; Petersen et al., 2012; Christakis et al., 2009).

On the other hand, research on innovative topics, whose technology is still in constant progress, development and improvement of efficiency on the use of inputs and the production of outputs like is the case of aquaponics in Europe, sometimes results in difficulties in obtaining data. These difficulties arise, or because there is no data available from private companies, or because either there are data from other continents, or countries whose production systems do not allow comparability, or because the soil-climatic conditions, or technical-institutional-economic conditions (Goddek, et al. (2015; Dos Santos. 2016). Because they use different production techniques due to the difference in quality and quantity of inputs available in loco.

In today’s world, information gathering often consists of searching online sources. Recently, the search engine Google tends has begun to provide access to aggregated information on the volume of queries for different search terms and how these volumes change over time, via the publicly available service Google Trends. In the present study, we investigate the intriguing possibility of analyzing search query data from Google Trends to provide new insights about the importance and the role of the Aquaponics Hub from COST FA 1305 in the growth and research of aquaponics and aquaponics related terms such as aquaculture and hydroponics in the world; Europe and European countries involved in this Action.

Literature Review

According the Google trends search (2017) the world is paying increasing attention to aquaponics and aquaponics associated terms based on the figure 1 that presents the searching terms across the world. That date is based on google trends research between 2014 and 2016. Since the beginning of January 2004, Google has been collecting data on the number of search queries that it receives for various search terms. From these raw data, Google can then compile a weekly Google Trends query index for the number of searches completed for any particular search term (Hand, & Judge, (2012). Data provided by Google Trends are already normalized over each selected period and downloaded online in .csv format. The normalization process is reported as follows: “each data point is divided by the total searches of the geography and time
range it represents, to compare relative popularity. The resulting numbers are then scaled to a
range of 0 to 100” (Google Trends, 2016; Google Trends, 2017, Mavragani and Tsagarakis,
2016).

Methodology

The methodology includes the Google Trends search from 2014-2016 at European; world and
per country level search. After we use univariate analysis and econometric models namely an
ARIMA model based on Choi and Varian (2009):

\[\ln y_t = \alpha_0 + \alpha_1 \ln y_{t-1} + \alpha_{12} \ln y_{t-12} + \beta x_t + \mu_t \]

Results and discussion

Figure 1 presents the present and prevision of aquaponics across the world. The prevision of
aquaponics and aquaponics related terms show an increasing trend in the future. Besides that,
the searching of aquaponics at the present (from 2014-2016) presents more or less constant
values at the world level. But at the same time in Europe aquaponics and aquaponics related
terms presents an increasing trend (Fig. 2). This fact could not be separate from the importance
and the ward scientific, professional and at politic level work developed by the Aquaponics
Hub. These results were, as well, confirmed by the partial searching per country (in Annex 1)
where the searching in aquaponics and aquaponics related terms show, in general an increasing
in the Google trends search after the country becomes part of this Action, but the results vary
depending the country.

Fig.1 - World Google trends searching
Fig 2 – Aquaponics searching in Europe
Fig 3 – Aquaponics searching in World

References

Dos Santos, Maria José Palma Lampreia. (2016)."Smart cities and urban areas—Aquaponics as innovative urban agriculture." Urban Forestry & Urban Greening Vol. 20, pp. 402-406.

Annex 1 - Aquaponics and aquaponics associated and related terms in different European countries
Fig. 4 - Belgium Google trends searching
Fig. 5 - Croatia Google trends searching
Fig. 6 - CZ Google trends searching
Fig. 7 - Denmark Google trends searching
Fig. 8 - France Google trends searching
Fig. 9 - Greece Google trends searching
Fig. 8 - Germany Google trends searching
Fig. 9 - Hungary Google trends searching
Fig. 9 - Slovenia Google trends searching
Fig. 10 - Netherlands Google trends searching
Fig. 11 - Malta Google trends searching
Fig. 12 - Portugal Google trends searching
Fig 13 – Norway Google trends searching
Fig 14 – Poland Google trends searching
Fig 15 – Serbia Google trends searching