L15

A new approach to assess fungal burden and mycotoxins occupational exposure in waste trucks workers

Carla Viegas1,2*, Tiago Faria1, Ana Cebola de Oliveira1, Liliana Aranha Caetano1,3 Anita Quintal-Gomes1,4, Magdalena Twarużek5, Robert Kosicki6, Susana Viegas1,2

1Environment and Health Research Group – Lisbon School of Health Technology, Lisbon, Portugal (ESTeSL/IPL) 2Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa 3Research Institute for Medicines (iMed.UNLisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal 4University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal 5Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology Department of Physiology and Toxicology, Chodkiewicza 30, PL – 85-064 Bydgoszcz, Poland

* Corresponding author: carla.viegas@estesl.ipl.pt

A large number of people work in waste management units and exposure to microorganisms is considered an occupational health problem. Besides fungal burden, it is important to consider the co-occurrence of mycotoxins in this setting. Additionally, it is known that in waste industry it is common to use vehicles to transport waste and other products within the facilities, increasing the risk of exposure.

Considering the above information, the aim of this study was to assess exposure to fungal burden and mycotoxin presence (aflatoxins including B1, agroclavin, deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, fusarenon X, deoxydeoxynivalenol, 3-acetyldeoxyxylanenol, neosolaniol, monoacetoxyscirpenol, diacetoxyscirpenol, HT-2 toxin, T-2 toxin, beauvericin, enniatins (B, B1, A1 and A) hydrolyzed fumonisins B1, fumonisins (B1 and B2), ergovalin, dihydroergolin, ergotamin, ergocornin, moniliformin, patulin, ochratoxin (a, β and A), verrucarin A, verrucarol, zearealenone-4-glucoside, α-zearealenol, β-zearealenol, zearalenone-4-sulfate, zearalenone) in filters from the air conditioning system that supply trucks cabinet as a different approach to assess occupational exposure of the drivers working in waste industry. Filters from eleven vehicles were collected and subject to further macro- and microscopic observations. Additionally, real-time quantitative polymerase chain reaction (qPCR) amplification of genes from Aspergillus sections Fumigati, Flavi, Circumdati and Versicolors was also performed. The mycotoxins were analyzed using LC-MS/MS system and detection was carried out using high performance liquid chromatograph (HPLC) Nexera (Shimadzu) with a mass detector API 4000 (AB Scieix).

Although none of the analysed mycotoxins were detected, fungal contamination was observed. The filter with less fungal contamination presented 500 CFU/m² and the one with higher fungal load presented 40×10³ CFU/m². Aspergillus genus sections Fumigati (24.7%) and Circumdati (24.3%) were the most prevalent, followed by Nigri (16.9%), Aspergilli (8.5%), Versicolors (6.6%) and Flavi (1.5%). Penicillium sp. was found in only one filter in high amounts (16.6%). Among all Aspergillus sections targeted by molecular tools only Aspergillus section Fumigati was detected and it was present in all assessed filters.

Considering the fungal burden found, filters replacement should be more regular to avoid workers exposure to fungi and mycotoxins since some of these species are toxigenic and can potentially, produce mycotoxins. Further studies should be developed to understand if the conditions present in the filters allow the production of mycotoxins and their dissemination in the cabinet during the normal use of the vehicles.