STRUCTURAL REINFORCEMENTS ON AFO’S: A STUDY USING COMPUTER AIDED DESIGNING AND FINITE ELEMENT METHOD

Gomes, Gonçalo 1; Lourenço, Inês1; Oliveira, José1; Gomes, Miguel 1; Vale, Alberto 2; Policarpo, Hugo 2; Quental, Paulo 2; Freire, Luís 1; Matos, José 1

(2012017.2012543}@alunos.estesl.ipl.pt, (44217.43359}@alunos.isel.ipl.pt
{avale.hpolicarpo,quental}@ipfn.tecnico.ulisboa.pt, (luis.freire, fulgenciomatos}@estesl.ipl.pt

1 Escola Superior de Tecnologia da Saúde de Lisboa, Departamento de Ortoprotesia, Portugal,
2 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal

What if AFO’s were cracking open??

As state by the literature, is usual for thermoplastic AFO’s to open cracks as result of the undergoing stress forces of human gait. That mechanical stress forces trigger fractures areas on critical points, normally near the malleoli (see the picture below), as result as the range of movement of that specific region.[1][2]

![Figure 1 – AFO with a Fracture][3]

David Showers and Lair David, claim that is possible to increase AFO’s resistance trough the inclusion of reinforcements (by waving the plastic) at the retromalleolar area.[3]

The purpose of this study is to verify the influence of the application of structural reinforcements has on the distribution of tension and deformation in an AFO in the stance phase of gait.

Did it result??

In order to evaluate the stress and deformation on the models (using CAE), we had first to scan a patient leg with a laser scanner (Rodin 4D), and then edit it using CAD software (ANSYS-Spaceclaim).

Scanning ➔ Designing ➔ Evaluating

After evaluating the model (that was set as reference model), the structural reinforcements were included, creating several different models to be evaluated as well.

![Figure 2 – Methodology process.][4]

![Figure 3 – Structural reinforcements created.][5]

As seen on table 1, the models with structural reinforcements have improvements on stress forces with both methods. Although here is a slightly difference in terms of values when comparing both methods, they present similar percentage of reduction.

![Figure 4 – Evaluating modified AFO model deformation (left) and tension (right).][6]

<table>
<thead>
<tr>
<th>Model analyzed</th>
<th>Results from the 50N method</th>
<th>Results from the dislocation method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max Stress (MPa)</td>
<td>Deformation (m)</td>
</tr>
<tr>
<td>Reference model</td>
<td>19.79</td>
<td>0.025</td>
</tr>
<tr>
<td>Model 1</td>
<td>20.11</td>
<td>0.026</td>
</tr>
<tr>
<td>Model 2</td>
<td>19.33</td>
<td>0.025</td>
</tr>
<tr>
<td>Model 3</td>
<td>19.06</td>
<td>0.025</td>
</tr>
<tr>
<td>Model 4</td>
<td>19.71</td>
<td>0.026</td>
</tr>
<tr>
<td>Model 5</td>
<td>19.12</td>
<td>0.025</td>
</tr>
<tr>
<td>Model 6</td>
<td>19.60</td>
<td>0.026</td>
</tr>
<tr>
<td>Model 7</td>
<td>29.24</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Note 2 – Evaluation results.

And our conclusions about all this are...

Despite the reduction of stress values in most of the reinforced models, not every model presented an improvement. The stress and deformation reduction didn’t appear to be related, as the model with least stress weren’t the model with the least deformation.

Despite the general improvement on reinforced models, presenting less amount of stress, it didn’t appear to be as significate as expected, and the impact of reinforcements in AFO’s lifetime can only be assessed with a transient study, including multiple cycles.

Reference: