Dedicatória

A presente tese é o resultado final de todo um esforço, trabalho e dedicação ao curso de Engenharia Mecânica no ISEL o qual, sem a ajuda preciosa da minha família não seria possível chegar a bom porto.

Muito Obrigado pelo vosso apoio e por tudo o que me têm dado ao longo da minha evolução como pessoa.

Dedico-vos a presente tese com os meus mais sinceros agradecimentos, carinho, estima e consideração

Mãe
Pai
Mana
Agradecimentos

Agradeço ao meu orientador de tese, o Doutor Fernando Marques da Silva, investigador no Laboratório Nacional de Engenharia Civil (LNEC) pelo tempo, apoio e paciência dispensados.

Agradeço ainda à minha co-orientadora, a Doutora Isabel Simões de Carvalho, docente do Instituto Superior de Engenharia de Lisboa (ISEL) do Departamento de Engenharia Mecânica pelo tempo e preocupação dedicados.

Agradeço também a todos os colegas e amigos que de certa forma contribuíram para a conclusão desta tese, a vossa companhia, apoio, conselhos e incentivos foram mais uma das bases sólidas que me ajudaram na realização deste trabalho.

Particularmente ao colega e amigo, o Engº Pedro Peixeiro, aqui fica o meu agradecimento pelos infináveis “brain stormings” em momentos de grande afinco ao tema em questão e outros nem tanto mas que contribuíram fortemente para a conclusão do presente trabalho.
Resumo

Neste trabalho, avaliou-se o comportamento térmico de uma fachada de dupla pele com ventilação natural.

A avaliação foi efectuada para uma célula de teste que permite adaptar várias configurações de fachada para a qual foram registados dados num determinado período de tempo através de um sistema de aquisição de dados.

Os dados registrados foram devidamente tratados e comparados para as diversas configurações.

Para as configurações testadas, utilizaram-se dois parâmetros adimensionais que permitiram a comparação da capacidade de pré aquecer o ar (aplicável à estação de aquecimento) e de isolar dinamicamente (aplicável à estação de arrefecimento).

Foram comparados os desempenhos da fachada quando a funcionar com os sistemas de sombreamento por persiana veneziana e por cortina têxtil.

Em pré aquecimento, o fluxo de insuflação mostrou-se uma boa opção.

Em isolamento dinâmico, a fachada retira o melhor partido do fluxo de extracção.

Os resultados obtidos para os sistemas de sombreamento recaem a favor do sombreamento por persiana veneziana.

As medições efectuadas na célula de teste vêm permitir futuros estudos de comparação com métodos de simulação numérica.

Os resultados obtidos demonstram a sensibilidade das fachadas de dupla pele ao clima onde se inserem. Contudo, os resultados obtidos não demonstram por si só a veracidade do desempenho desta tecnologia no clima em Portugal.

Palavras-Chave: Fachadas de Dupla Pele, Ventilação Natural, Comportamento Térmico, Racionalização de Energia
Abstract

In this work it’s evaluated the thermal behavior of a double skin facade with natural ventilation. The evaluation was carried out for a test cell which allows several settings of the facade and data were recorded over a period of time through a system of data acquisition. The recorded data were properly processed and compared for the different settings. For the configuration tested, were used two dimensionless parameters that allowed comparison of the ability to pre-heat the air (for the heating season) and isolate dynamically (for the cooling season).

Was compared the performance of the facade when working with systems of shading venetian blind and curtain textiles.

For pre-heat, the flow of supply air proved to be a good option.

In dynamic insulation, the facade takes full advantage of the flow of extraction.

The results obtained for the shading systems, it’s better for the shading Venetian blind.

The measurements in the test cell are further studies to allow comparison with methods of numerical simulation.

The results demonstrate the sensitivity of double skin facades to the climate around them. However, these results do not show by themselves the veracity of the performance of this technology in the weather in Portugal.

Key-Words: Double Skin Façade, Natural Ventilation, Thermal Behavior, Energy Efficient
Índices

DEDICATÓRIA .. I
AGRADECIMENTOS .. II
RESUMO .. III
ABSTRACT ... IV
ÍNDICES .. V
LISTA DE SÍMBOLOS ... VII
LISTA DE FIGURAS ... VIII
LISTA DE TABELAS ... X

1 INTRODUÇÃO .. 1
 1.1 ORGANIZAÇÃO DA Tese .. 1
 1.2 HISTÓRIA E EVOLUÇÃO ... 1
 1.3 CONSIDERAÇÕES GERAIS ... 3
 1.4 TEMÁTICA ... 4
 1.5 CONTRIBUIÇÃO DA Tese ... 7

2 FUNDAMENTOS TEÓRICOS ... 8
 2.1 DESCRIÇÃO GERAL DO CONCEITO DE FACHADAS VENTILADAS 8
 2.2 PROCESSOS DE TRANSFERÊNCIA DE CALOR .. 10
 2.2.1 Transferência de Calor por Radiação ... 10
 2.2.2 Transferência de calor por Condução .. 13
 2.2.3 Transferência de calor por Convecção .. 14

3 TECNOLOGIA .. 16
 3.1 CLASSIFICAÇÃO DAS FACHADAS DUPLAS VENTILADAS 16
 3.1.1 Vantagens ... 21
 3.1.2 Desvantagens .. 24
 3.2 CARACTERÍSTICAS DO VIDRO .. 26

4 PRINCÍPIO DE FUNCIONAMENTO ... 30
 4.1 FORÇAS DE INFLUÊNCIA DIRECTA NO FUNCIONAMENTO DAS FACHADAS VENTILADAS ... 30
 4.1.1 O Vento .. 31
 4.1.2 Efeito de Chaminé .. 32
 4.1.3 Ventilação Mecânica .. 34

5 METODOLOGIA .. 36
 5.1 CARACTERIZAÇÃO DA CÉLULA DE TESTE ... 36
 5.1.1 Envolvente .. 37
5.1.2 Descrição dos Ensaios Realizados ... 38
5.2 MODELO MATEMÁTICO ... 45
 5.2.1 O Processo Térmico ... 45
 5.2.2 O vento ... 47
 5.2.3 Indicadores de eficiência e avaliação do comportamento térmico da fachada ... 49
 5.2.3.1 Eficiência de Pré Aquecimento ... 50
 5.2.3.2 Eficiência de Isolamento Dinâmico ... 51
 5.2.4 Exemplo de Cálculo ... 53
6 RESULTADOS E DISCUSSÃO ... 59
 6.1 CONSIDERAÇÕES GERAIS ... 60
 6.1.1 Condições Exteriores .. 60
 6.1.2 Temperatura Média do Ar no Canal .. 60
 6.1.3 Radiação de comprimento de onda curto e fluxo de calor que chega à sala ... 61
 6.1.4 Temperatura Média do Sombreamento ... 62
 6.1.5 Caudal Global de Ventilação Natural .. 62
 6.2 FREQÜÊNCIA DE OCORRÊNCIA DE EFICIÊNCIA DE PRÉ AQUECIMENTO ... 64
 6.3 EFICIÊNCIA DE ISOLAMENTO DINÂMICO ... 71
 6.4 RESULTADOS CORTINA TÊXTIL ... 79
7 CONCLUSÕES E PERSPECTIVAS FUTURAS ... 83
ANEXOS ... 88
FLUXO DE AR EXTERIOR .. 89
FLUXO EXTERIOR CRUZADO .. 100
FLUXO DE INSUFLAÇÃO .. 121
FLUXO DE EXTRACÇÃO ... 145
FLUXO INTERIOR ... 168
CONFIGURAÇÃO TAMPÃO .. 176
RESULTADOS CORTINA TÊXTIL ... 182
EFICIÊNCIA DE ISOLAMENTO DINÂMICO PARA FLUXO EXTERIOR 183
EFICIÊNCIA DE ISOLAMENTO DINÂMICO PARA FLUXO EXTERIOR CRUZADO 183
EFICIÊNCIA DE ISOLAMENTO DINÂMICO PARA FLUXO DE INSUFLAÇÃO ... 184
EFICIÊNCIA DE ISOLAMENTO DINÂMICO PARA FLUXO DE EXTRACÇÃO ... 184
CONFIGURAÇÃO TAMPÃO .. 185
8 REFERÊNCIAS BIBLIOGRÁFICAS ... 187
Lista de Símbolos

Esta lista de símbolos não pretende ser exaustiva, alguns símbolos podem aparecer no texto e não se encontram aqui indicados.

Símbolos Romanos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Área</td>
<td>[m2]</td>
</tr>
<tr>
<td>C_d</td>
<td>Coeficiente de Descarga</td>
<td>[-]</td>
</tr>
<tr>
<td>C_p</td>
<td>Calor específico a pressão constante</td>
<td>[J/kg.ºK]</td>
</tr>
<tr>
<td>C_p</td>
<td>Coeficiente de pressão do vento</td>
<td>[-]</td>
</tr>
<tr>
<td>G</td>
<td>Caudal de Ventilação</td>
<td>[m3/h]</td>
</tr>
<tr>
<td>I</td>
<td>Radiação solar incidente na superfície</td>
<td>[W/m2]</td>
</tr>
<tr>
<td>m_v</td>
<td>Caudal mássico de ar</td>
<td>[kg/s]</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>Fluxo de calor</td>
<td>[W]</td>
</tr>
<tr>
<td>q_s</td>
<td>Fluxo de calor específico que entra no interior com origem na radiação de comprimento de onda curto</td>
<td>[W/m2]</td>
</tr>
<tr>
<td>q_i</td>
<td>Fluxo de calor específico que entra no interior com origem na radiação de comprimento de onda longo e na diferença de temperatura</td>
<td>[W/m2]</td>
</tr>
<tr>
<td>T</td>
<td>Temperatura</td>
<td>[ºC] ou [ºK]</td>
</tr>
<tr>
<td>U</td>
<td>Coeficiente global de transmissão de calor</td>
<td>[W/m2.ºK]</td>
</tr>
<tr>
<td>g</td>
<td>Factor solar do vidro</td>
<td>[%]</td>
</tr>
</tbody>
</table>

Símbolos Gregos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Absorsividade do vidro</td>
<td>[%]</td>
</tr>
<tr>
<td>ρ</td>
<td>Refelectividade do vidro</td>
<td>[%]</td>
</tr>
<tr>
<td>τ</td>
<td>Transmissividade do vidro</td>
<td>[%]</td>
</tr>
<tr>
<td>η</td>
<td>Eficiência de pré aquecimento</td>
<td>[%]</td>
</tr>
<tr>
<td>ε</td>
<td>Eficiência de isolamento dinâmico</td>
<td>[%]</td>
</tr>
<tr>
<td>ρ</td>
<td>Massa Volúmica</td>
<td>[kg/m3]</td>
</tr>
</tbody>
</table>
Lista de Figuras

FIGURA 2.1 - ESPECTRO ELECTROMAGNÉTICO ... 11
FIGURA 2.2 - ESPECTRO DO RAIO SOLAR GLOBAL SEGUNDO A EN410 11
FIGURA 2.3 - ÂNGULOS SOLARES RELATIVOS A UMA SUPERFÍCIE 12
FIGURA 2.4 - SUPERFÍCIE EXPOSTA À RADIAÇÃO SOLAR 13
FIGURA 2.5 - CONDUÇÃO DE CALOR ATRAVÉS DE UMA PAREDE DE ÁREA A E ESPRESSURA L 14
FIGURA 2.6 - a) TRANSFERÊNCIA DE CALOR DE UMA SUPERFÍCIE QUENTE PARA O AR POR CONVECÇÃO;
 b) ARREFECEMNETO DE UM OVO COZIDO POR CONVECÇÃO FORÇADA E NATURAL 15
FIGURA 3.1 - PERCURSO DO AR a) AE; b) AI; c) FR; d) FE; e) FI 17
FIGURA 3.2 - PROPOSTA SIMPLIFICADA DE CLASSIFICAÇÃO DAS FACHADAS INTEGRADAS AVANÇADAS ... 17
FIGURA 3.3 - CONFIGURAÇÃO DE UMA PAREDE CLIMATIZADA 18
FIGURA 3.4 - CONFIGURAÇÃO TAMPÃO ... 18
FIGURA 3.5 - MODULAR ... 19
FIGURA 3.6 - CONFIGURAÇÃO COLUNA DE EXTRACÇÃO ... 19
FIGURA 3.7 - CONFIGURAÇÃO CORREDOR .. 20
FIGURA 3.8 - a) CONFIGURAÇÃO MULTI PISO b) FACHADA GÊMEA 20
FIGURA 3.9 - PROCESSOS DE TRANSFERÊNCIA DE CALOR POR RADIAÇÃO ATRAVÉS DO VIDRO ... 27
FIGURA 4.1 - a) EFEITO DO VENTO; b) EFEITO CHAMINÉ; c) COMBUSTÃO E VENTILAÇÃO MECÂNICA ... 31
FIGURA 4.2 - EFEITOS DE PRESSÃO CAUSADOS PELA INCIDÊNCIA DO VENTO EM FACHADAS DISTINTAS ... 32
FIGURA 4.3 - EFEITO CHAMINÉ .. 34
FIGURA 4.4 - INSUFLAÇÃO DO AR NO ESPAÇO INTERIOR COM RECURSO À VENTILAÇÃO MECÂNICA 35
FIGURA 5.1 - VISTA PELO INTERIOR DA FACHADA VENTILADA 36
FIGURA 5.2 - CÉLULA DE TESTE .. 38
FIGURA 5.3 - FLUXO EXTERIOR .. 40
FIGURA 5.4 - FLUXO DE INSUFLAÇÃO .. 40
FIGURA 5.5 - FLUXO DE EXTRACÇÃO .. 41
FIGURA 5.6 - FLUXO INTERIOR .. 41
FIGURA 5.7 - CONFIGURAÇÃO TAMPÃO .. 42
FIGURA 5.8 - LOCALIZAÇÃO DOS SENSORES DE RECOLHA DE DADOS 42
FIGURA 5.9 - DESEQUILÍBRIO DE PRESSÕES DEVIDO A DIFERENÇAS DE TEMPERATURA 45
FIGURA 5.10 - FLUXOS DE ENERGIA ATRAVÉS DA FACHADA VENTILADA ... 52
FIGURA 5.11 – ROSA-DOS-VENTOS .. 55
FIGURA 6.1 – FIGURA H1 .. 60
FIGURA 6.2 – FIGURA H2 .. 60
FIGURA 6.3 – FIGURA H3 .. 61
FIGURA 6.4 – FREQUÊNCIA DE OCORRÊNCIA DE PRÉ AQUECIMENTO FLUXO EXTERIOR 64
FIGURA 6.5 – FREQUÊNCIA DE OCORRÊNCIA DE PRÉ AQUECIMENTO FLUXO EXTERIOR CRUZADO ... 65
FIGURA 6.6 – FREQUÊNCIA DE OCORRÊNCIA DE PRÉ AQUECIMENTO FLUXO DE INSUFLAÇÃO 67
FIGURA 6.7 – FREQUÊNCIA DE OCORRÊNCIA DE PRÉ AQUECIMENTO FLUXO DE EXTRACÇÃO.......... 68
FIGURA 6.8 – FREQUÊNCIA DE OCORRÊNCIA DE PRÉ AQUECIMENTO FLUXO INTERIOR 70
FIGURA 6.9 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO EXTERIOR 71
FIGURA 6.10 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO EXTERIOR CRUZADO ... 72
FIGURA 6.11 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO DE INSUFLAÇÃO .. 73
FIGURA 6.12 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO DE EXTRACÇÃO .. 75
FIGURA 6.13 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO INTERIOR 76
FIGURA 6.14 – FIGURA AH2.. 77
FIGURA 6.15 – FIGURA AI3 .. 77
FIGURA 6.16 – FIGURA E2.. 77
FIGURA 6.17 – FIGURA H5 .. 77
FIGURA 6.18 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO EXTERIOR CORTINA TÊXTIL ... 79
FIGURA 6.19 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO EXTERIOR CRUZADO CORTINA TÊXTIL .. 80
FIGURA 6.20 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO DE INSUFLAÇÃO CORTINA TÊXTIL ... 81
FIGURA 6.21 – FREQUÊNCIA DE OCORRÊNCIA DE ISOLAMENTO DINÂMICO FLUXO DE EXTRACÇÃO CORTINA TÊXTIL ... 81

IX
Lista de Tabelas

TABELA 5.1 - RESUMO DAS CARACTERÍSTICAS DOS MATERIAIS UTILIZADOS .. 37
TABELA 5.2 - RESUMO DAS CARACTERÍSTICAS DOS VIDROS UTILIZADOS ... 37
TABELA 5.3 - COEFICIENTES DE PRESSÃO LOCAIS DO VENTO, OBTIDOS EM TÚNEL DE VENTO COM
 MODELO À ESCALA .. 47
1 Introdução

1.1 Organização da Tese

Na introdução a este trabalho será brevemente referida a história e a evolução do conceito das fachadas envidraçadas até à actualidade. Alguns conceitos e definições relacionados com as fachadas de dupla pele serão também mencionados de forma a abranger genericamente o conceito das fachadas de dupla pele, para que a sua classificação e caracterização detalhadas, definam por completo as configurações possíveis.

A descrição do princípio de funcionamento das fachadas de dupla pele será baseada na teoria de base da termodinâmica e transferência de calor ou seja, a descrição do modo como se processam as trocas de calor através da envolvente e o seu impacto no conforto e na eficiência energética serão ditadas não só pelo tipo de configuração utilizado mas também pelo comportamento do vidro à transferência de calor.

Por se tratar de um trabalho de natureza experimental, será caracterizada a célula de teste utilizada assim como o processo de aquisição de dados ao longo do período de teste.

As bases matemáticas para o tratamento dos dados experimentais obtidos serão alvo de um desenvolvimento cuidado até às expressões finais utilizadas, tendo como base de referência autores que desenvolveram expressões analíticas e obtiveram comprovação experimental das mesmas. As expressões resultantes das deduções matemáticas serão utilizadas nos exemplos de cálculo.

Após a análise aos resultados de cada configuração, serão retiradas conclusões e, quando relevantes, estabelecidas comparações entre configurações.

Por último serão comparados os resultados obtidos neste trabalho experimental com outros publicados anteriormente onde, no lugar de persianas venezianas, foram utilizadas como sistema de sombreamento cortinas têxteis.

1.2 História e evolução

Ao longo do século XX, a imagem dos edifícios nos meios urbanos tem vindo a ser alterada pela arquitectura moderna com a implementação cada vez mais acentuada de edifícios com grandes superfícies envidraçadas. Esta arquitectura, denominada de arquitectura transparente, (Pultz 2002)
Comportamento Térmico de Fachadas Ventiladas

vem ao encontro do que tem vindo a ser mencionado ao longo dos últimos anos em relação à
beneficiação do conforto dos seus ocupantes, conforto térmico e visual que proporcionam um bem-
estar generalizado, traduzindo-se num forte contacto entre o interior e a zona circundante do
edifício. A utilização de envolventes transparentes é cada vez mais sinónima de alta tecnologia e de
uma aparência agradável para a paisagem urbana em que se inserem (Marques da Silva e Gosselin
2005).

As envolventes transparentes dotadas de uma única pele, apresentavam problemas tanto na estação
de aquecimento como na de arrefecimento. Na estação de aquecimento surgiram problemas
relacionados com a condensação de vapor nas superfícies envidraçadas e durante a estação de
arrefecimento, devido à forte incidência da radiação solar, o sobreaquecimento de todo o sistema
era uma ocorrência frequente. Em ambas as estações, o desconforto em zonas próximas das
fachadas envidraçadas foi uma enorme desvantagem devido ao fraco desempenho térmico de uma
só pele de envidraçado.

Obviamente todos estes inconvenientes viriam a resultar em consumos excessivos de energia de
forma a assegurar os parâmetros de conforto interiores. Surgiram então inovadores sistemas de
envidraçados com sombreamento solar que viriam a resolver os problemas existentes durante a
estação de aquecimento a um baixo custo. Contudo, os problemas durante a estação de
arrefecimento mantinham-se e a sua resolução estava ainda longe de ser conseguida (Marques da
Silva e Gosselin 2005).

Passou a ser utilizado sombreamento ajustável no exterior da fachada, prevenindo assim a
incidência da radiação solar durante a estação de arrefecimento e o contrário durante a estação de
aquecimento. Estes sistemas teriam de ser extremamente robustos para suportar a intempérie e
estavam sempre associados a sistemas complexos e de elevados custos de manutenção.

Surgiu então a tecnologia das fachadas de dupla pele que viriam resolver todos os problemas
associados às fachadas envidraçadas de uma só camada ou fachadas envidraçadas simples e
revolucionar por completo a arquitectura transparente.

Também conhecidas por fachadas ventiladas, as fachadas de dupla pele passaram a ser objecto de
estudos e de testes experimentais de forma a comprovar a eficiência e a redução do consumo
energético desta nova tecnologia, no entanto, existe ainda um grande défice de informação e dados
experimentais que permitam chegar a conclusões definitivas do desempenho e da viabilidade da
implementação desta tecnologia.

O défice de documentação regulamentar e de normalização para este tipo de edifícios, devido às
suas características de comportamento extremamente dinâmicas ao longo do ano e de clima para
Comportamento Térmico de Fachadas Ventiladas

clima, levaram à definição de variadíssimos sistemas e de configurações distintas por parte de fabricantes que iniciaram pesquisa e desenvolveram os seus próprios sistemas. O aumento do desempenho térmico, energético e estético para o clima onde se inserem passou a ser uma realidade. O critério de escolha do tipo de sistema a utilizar que resulte na redução do consumo de energia, não se mostrou suficiente. A necessidade de controlar e conduzir todo o sistema de forma contínua e em tempo real trouxe a necessidade de associar os elementos constituintes da fachada a um avançado sistema de gestão técnica centralizada de todo o edifício. (Marques da Silva e Gosselin 2005).

1.3 Considerações Gerais

A envolvente de um edifício tem como função a separação física entre os ambientes exterior e interior e desempenha um papel extremamente importante nos ganhos solares no verão e perdas térmicas no inverno. A envolvente desempenha ainda um importante papel nas infiltrações, ventilação, controlo do ruído exterior e o seu aspecto como medida da qualidade estética. Tipicamente, a envolvente define uma barreira física entre as variações climatéricas exteriores e o ambiente interior devidamente controlado.

A eficiência da fachada é uma medida da sua capacidade de proteger o interior das agressões do ambiente exterior. Contudo, conceitos inovadores das envolventes dos edifícios vieram definir a envolvente como sendo um filtro moderador entre os ambientes interno e externo. (McClintock M 1997).

O aspecto da fachada deve ir ao encontro dos objectivos a que se propõe de acordo com o clima em que esta se insere. As fachadas de edifícios inseridos em climas quentes serão diferentes das fachadas inseridas em climas mais frios, por consequência, o seu aspecto, o modo de funcionamento e necessidades específicas serão diferentes devido às condições climatéricas. A sua aparência difere em ambos os casos, acompanhando o aspecto dos materiais utilizados numa e noutra situação, assim como as tecnologias de construção típicas de cada país.

A negligência na construção de edifícios de acordo com o clima onde se inserem é preocupante, utilizando materiais de fraca qualidade e sendo ignoradas as estratégias de arquitectura tradicional de forma a reduzir o consumo energético. Como resultado, o consumo energético associado ao arrefecimento dos edifícios aumenta drasticamente e em especial para os edifícios envidraçados, onde a potência específica W/m^2 para arrefecimento é muito elevada.
Comportamento Térmico de Fachadas Ventiladas

Existem inúmeras estratégias desenvolvidas para a utilização do potencial das fachadas de dupla pele como o principal responsável pela poupança de energia. As funções de uma fachada implementada num clima quente serão reduzir os ganhos solares e permitir uma boa incidência de luz natural no seu interior. Estratégias como a utilização de sistemas de sombreamento internos ou externos, sistemas de ventilação passivos ou activos e sistemas de fachada de dupla pele, permitem a optimização do desempenho das funções que se pretende.

Contudo, outras técnicas passivas solares como é o caso da parede de “Trombe” têm vindo a ser utilizados ao longo dos últimos anos. O conceito de fachada de dupla pele começa agora a ser mais utilizado na arquitectura, prevendo-se que estas venham a contribuir fortemente para a redução do consumo energético e custos de operação mais baixos, tendo o vidro como base estética de todo o edifício. Actualmente, a Europa detém a maior fatia das fachadas de dupla pele, começando actualmente a ter os seus primeiros avanços nos Estados Unidos da América assim como em alguns países da Ásia e Austrália. (Yellamraju 2004).

1.4 Temática

A energia é uma das maiores preocupações nos tempos que correm, dado o aumento exponencial da população mundial e consequentemente do consumo energético, particularmente no sector terciário. A racionalização da energia aliada à sua utilização eficiente, devem ser preocupações constantes em fase de projecto, recorrendo à optimização de materiais de construção, orientação geográfica dos edifícios e um eficaz sistema de gestão energética desse mesmo edifício “Building Management System”.

A Racionalização e Utilização Eficiente da Energia devem seguir determinadas directrizes e podem ser definidas do seguinte modo:

“Plano de Racionalização de Energia – Consiste basicamente num programa de actuação do consumidor abrangendo um período de 5 anos que, integrando os resultados da Auditoria Energética realizada e os planos de produção e desenvolvimento previstos pela entidade que explora a instalação, permita reduzir os consumos específicos de energia de acordo com metas previamente fixadas”. (Lopes e Sarmento 2000).
A Eficiência Energética toma várias definições, dependendo do tema em questão. A eficiência energética em edifícios é caracterizada pelas seguintes afirmações:

“Eficiência Energética, Electricidade – Relacionada com softwares de gestão capazes de diminuir a energia consumida por um aparelho ou sistema, típicamente sem afetar o seu funcionamento. Estes softwares garantem a efectiva diminuição do consumo eléctrico (expresso em Megawatt hora), muitas vezes sem considerar as reduções do tempo de funcionamento dos equipamentos e sistemas, proporcionadas pelos softwares. Tais reduções são geralmente alcançadas pela substituição de equipamento obsoleto, executando as funções de igual modo (por exemplo a iluminação, o aquecimento e motores) com menor consumo eléctrico. Exemplos onde a aplicação de software destinado ao aumento da eficiência da iluminação, recorrendo à sua gestão devidamente controlada, aquecimento, ventilação e ar condicionado, sistemas de (AVAC) onde é possível modificar o seu controlo, resultando num edifício mais eficiente, também os motores eléctricos optimizados e sistemas de recuperação de calor contribuem para a diminuição do consumo”. (Energy Information Admnistration (EIA)).

“Intensidade da Energia (Edifícios de serviços com monitorização do consumo energético) – É a razão entre o consumo energético e a área ocupada”. (Energy Information Admnistration (EIA)).

“Sistemas de Controlo e Gestão de Energia – Sistemas de gestão de energia, como é o caso dos mini/microcomputadores, instrumentação, controlo de equipamento e software de gestão de um edifício que utiliza essa energia para aquecimento, ventilação, ar condicionado e iluminação e/ou outras situações relacionadas com edifícios de serviços. Estes sistemas podem também gerir a segurança contra incêndio. Não estão incluídos nesta definição sistemas que utilizem relógios programáveis ou termóstatos”. (Energy Information Admnistration (EIA)).

“Praticas para gestão de energia – Fazem parte integrante da operação normal dos edifícios, utilizando planos para aumentar a eficiência energética dos equipamentos, mantendo as suas funções de base inalteradas. É aqui incluído o seguinte: Sistemas de Controlo e Gestão de Energia, Softwares de Gestão, Auditorias Energéticas, e um Responsável Energético do Edifício”. (Energy Information Admnistration (EIA)).

Definição do sistema de fachadas de dupla pele

Várias definições de inúmeros autores têm sido propostas para a normalização do conceito desta tecnologia. De seguida, uma breve referência a estas definições exemplificará claramente o âmbito da sua aplicação.
Segundo o Source Book of the Belgian Building Research Institute (BBRI), (Cit. por Poirazis 2006), “Uma fachada activa é caracterizada por cobrir um ou vários andares com um pano envidraçado. Os panos podem confinar um canal de ar fechado ou não. Neste tipo de fachadas, o canal de ar situado entre os dois panos pode ser mecânico ou naturalmente ventilado. A estratégia de ventilação do canal de ar pode variar ao longo do dia numa base horária. Equipamentos e sistemas encontram-se geralmente integrados de modo a optimizar o ambiente interior com tecnologias de natureza passiva ou activa. Na maioria dos casos, estes sistemas são conduzidos de uma forma semi-automática por sistemas de controlo específicos”. Claessens e DeHerde, (Cit. por Poirazis 2006) afirmam que “o espaço entre os dois panos funciona como zona tampão e pode ser aquecido pela radiação solar, dependendo da orientação da fachada do edifício. Para fachadas de edifícios orientados a sul, o ar aquecido pela radiação solar é usado para aquecimento durante a estação de inverno. Esse espaço deve ser ventilado de forma a evitar períodos de sobreaquecimento”. Harrison e Boake in the Tectonics of the Environmental Skin, (Cit. por Poirazis 2006), “a camada principal de vidro é geralmente isolante. O canal de ar entre as camadas de vidro tem como função o isolamento térmico, acústico e do vento”.

Krag in Building Envelopes and Environmental Systems classifica as fachadas de dupla pele de acordo com a sua função (tipo de ventilação) do canal em três tipos (Cit. por Poirazis 2008):

- **Parede Naturalmente Ventilada** – “Um pano extra é adicionado à envolvente do edifício pelo lado exterior. Em períodos sem radiação solar, o pano extra proporciona um isolamento térmico adicional. Nos períodos com radiação solar, o pano é naturalmente ventilado de/para o exterior através do efeito de chaminé ou seja, o ar no canal sobe quando é aquecido pela radiação solar (a radiação solar tem de se absorver pelas persianas do canal). Os ganhos solares vão sendo reduzidos à medida que o ar interior é expelido para o exterior. A diferença de temperaturas entre o ar exterior e o ar no interior do canal deverá ser significativa para que a fachada funcione devidamente. Deste modo, este tipo de fachadas não é recomendado para climas quentes”. (Poirazis 2008).

- **Parede Activa** – “Um pano extra é adicionado à envolvente do edifício pelo lado interior. Ar interior é recirculado pelo interior do canal e levado de volta ao sistema de ventilação. Para períodos com radiação solar, a energia absorvida pelas persianas é eliminada pela ventilação. Em períodos com ganhos de calor, a energia proveniente da radiação solar pode ser recuperada por permutadores de calor. Igualmente, para os períodos frios com pouca ou nenhuma radiação solar e durante os períodos com ganhos solares associados a necessidades de arrefecimento, a temperatura da superfície interior do pano envidraçado interior é mantida próxima da temperatura interior, conduzindo ao aumento de conforto para os ocupantes na zona periférica da fachada. Este tipo de fachada é recomendado para climas frios, devido à melhoria do conforto durante a estação de aquecimento, tendo ainda a possibilidade de recuperação da energia proveniente da radiação solar”. (Poirazis 2008).

- **Parede Interactiva** – “O princípio da interactividade é muito parecido com o da Parede Naturalmente Ventilada, com a diferença de que esta ventilação é forçada. Significa que o sistema consegue funcionar com elevadas temperaturas ambiente, uma vez que não depende somente do efeito de chaminé. O sistema mostra-se então ideal para climas quentes, com grandes necessidades de arrefecimento. Durante os períodos frios, sem radiação solar, (à noite) a ventilação pode ser reduzida para aumentar o isolamento térmico. Para além das
vantagens em termos de conforto térmico e visual, este sistema permite o manuseamento de janelas para ventilação natural também em edifícios arranha-céus”. (Poirazis 2008).

1.5 Contribuição da Tese

O presente trabalho será direccionado exclusivamente ao estudo do comportamento térmico das fachadas de dupla pele a funcionar em ventilação natural. A verificação do comportamento térmico das fachadas de dupla pele em particular, vem contribuir para uma escolha mais criteriosa em fase de projecto, tendo como base as conclusões a retirar do presente trabalho.

Pesquisa e inovação tecnológica são sinónimos de uma melhor e mais eficiente utilização da energia, onde o comportamento e a influência da envolvente no consumo energético são determinantes.

A comparação entre o desempenho térmico do sistema de sombreamento por persianas venezianas a verificar neste trabalho e o sistema de sombreamento por cortina têxtil estudada noutros trabalhos poderá servir como base de selecção entre estas duas soluções para estudos ou para aplicações futuras na construção.

Dada a natureza fortemente dinâmica e de difícil previsão, desta tecnologia ao longo do ano e de clima para clima, este trabalho reporta o seu comportamento térmico quando utilizada em Portugal, deixando bases de referenciação para projecto, assim como para comparação com futuros trabalhos nesta área.

A integração deste sistema nos sistemas de AVAC pode mostrar-se interessante, contudo, este não é um objectivo deste trabalho. As conclusões aqui retiradas poderão servir como bases de futuro para um estudo da integração de fachadas de dupla pele com sistemas de AVAC.
2 Fundamentos Teóricos

2.1 Descrição Geral do Conceito de fachadas ventiladas

À primeira vista, as fachadas ventiladas quando observadas pelo exterior não são mais do que um comum edifício envidraçado. No entanto, esta tecnologia inclui estratégias de ventilação, iluminação natural e controlo dos ganhos solares devidamente definidos em fase de projecto e aplicados na sua construção, formando um conjunto de componentes chave para conforto e eficiência energética.

O objectivo é fazer circular ar no interior do canal formado pelos dois panos envidraçados por intermédio de ventiladores (ventilação mecânica) ou somente através de aberturas de entrada e saída de ar (ventilação natural) ou ainda por intermédio de um ou outro, tendo como critério, necessidades/disponibilidade que é “decidido” por um sistema de gestão que se encarrega de arrancar/parar os ventiladores de acordo com parâmetros pré estabelecidos (ventilação híbrida). Por outro lado, esse espaço deve também ser utilizado para a colocação de sistemas de sombreamento que contribuam para a diminuição do consumo energético e para a melhoria do conforto interior (equilíbrio entre conforto térmico e visual). Contudo este sistema carece de particular atenção na fase de projecto, dado que se trata de um sistema extremamente dinâmico, onde o controlo e a gestão centralizada de todos os elementos da pele do edifício, serão sem dúvida alguma essenciais. Existe ainda a possibilidade não fazer circular ar no interior do canal (situação de tampão).

Nos climas menos frios é na estação de arrefecimento que ocorrem os problemas mais difíceis de resolver nas fachadas de dupla pele. Problemas de sobreaquecimento podem ocorrer se não forem previstos os tipos de ventilação e configurações de fachadas adequados ao clima onde se inserem.

Na estação de aquecimento, o problema da condensação é uma realidade mas, durante a estação de arrefecimento, o sobreaquecimento da envolvente mostra-se mais problemático para o conforto dos ocupantes (Marques da Silva e Gosselin 2005) assim como também para os esforços de origem térmica a que os panos envidraçados ficam sujeitos, podendo resultar na deterioração prematura da envolvente.

Na última década, foram conseguidos grandes avanços no desempenho de elementos específicos dos edifícios; paredes, cobertura, elementos dos envidraçados, sistemas de sombreamento solar,
sistemas de iluminação, equipamento de aquecimento, arrefecimento e ventilação. Contudo, estes avanços carecem de um controlo que permita um desempenho global óptimo de todo o edifício.

Graças a toda a evolução associada aos elementos construtivos dos edifícios, têm vindo a aparecer edifícios com envolventes inteiramente transparentes, as fachadas envidraçadas sendo que, a vantagem é maioritariamente estética embora o seu comportamento térmico não seja o mais desejado.

As fachadas de dupla pele ou Double Skin Façades (DSF), designadas também por “building in building” (GlassinBuilding), têm vindo a ser largamente utilizadas pela arquitectura moderna desde meados do século XX, devido não só às vantagens técnicas inicialmente anunciadas mas também devido ao aspecto moderno e de alta tecnologia que apresenta em ambientes urbanos.

Também conhecidas por glass double façades (GDF), as fachadas de dupla pele tiveram um acentuado aumento nos últimos anos, maioritariamente na Europa Central em edifícios comerciais. (Pultz 2002).

As DSF são elementos constituintes do edifício incluídos no grupo dos denominados Responsive Building Elements (RBE) ou elementos de construção adaptativos. Estes elementos podem ser definidos como elementos de construção que verificam a continuidade entre os parâmetros de conforto interiores e o desempenho energético óptimo quando as alterações das condições exteriores e a influência da ocupação interna provocam alterações indesejadas (Marques da Silva e Gosselin 2005).

Surgiu recentemente o conceito de Advanced Integrated Façades (AIF) ou fachadas integradas avançadas que são um tipo de RBE’s, tendo tido como base os conceitos da arquitectura passiva, resultando neste novo conceito de Inteligent Façades (IF) ou envolventes inteligentes. Hoje em dia o maior dos desafios dado o comportamento dinâmico e imprevisível desta tecnologia é sem dúvida alguma a efectiva redução do consumo energético (custos de operação, iluminação artificial e das necessidades de aquecimento/arrefecimento) e garantir os parâmetros de conforto interior térmicos e visuais previstos (Marques da Silva e Gosselin 2005).

A pele inteligente

Segundo Compagno e Schittich, (Cit. por Santiago), o conceito de pele inteligente define o pano exterior do edifício como um elemento que não deve ser inerte mas deve poder actuar dinamicamente de forma a reduzir as necessidades energéticas do edifício. Há vários anos, os
edifícios eram actuados manualmente. Elementos como janelas, portadas, persianas venezianas susceptíveis de serem manualmente controladas, têm vindo a ser substituídas por controlo automático mecânico motorizado, podendo ser ajustados com maior precisão. A pele inteligente interage com os seus elementos (RBE’s), ajustando-os e auto regulando-os de uma forma quase “instintiva”. Os fluxos de energia através do pano exterior são controlados de forma a obter o conforto óptimo e a mínima dependência do consumo energético. A pele do edifício, encontra-se interligada com outros sistemas constituintes do edifício fora da zona da envolvente, como sejam sensores e motores, todos eles também interligados e conectados a um sistema de gestão centralizada.

2.2 Processos de Transferência de Calor

2.2.1 Transferência de Calor por Radiação

Natureza da Radiação

A radiação é a transmissão de energia por ondas electromagnéticas e à energia transmitida dá-se o nome de energia radiante. Contudo, o termo radiação é utilizado em geral para designar a própria energia radiante. As ondas electromagnéticas caracterizam-se pelo seu comprimento de onda (λ) ou pela frequência (f), sendo a frequência inversamente proporcional ao comprimento de onda. Utiliza-se normalmente o comprimento de onda na análise da transferência de calor por radiação. Em termos simples, a radiação viaja pelo espaço à velocidade da luz e não requer a presença de nenhum meio para intervir na sua propagação. Exemplo disso mesmo, é considerar um corpo quente à temperatura T_1, dentro de uma câmara de vácuo, cujas paredes se encontram frias e à temperatura T_2. Uma vez que não é possível a transferência de calor por condução nem por convecção, o corpo arrefece por troca de calor por radiação.
A radiação solar que atinge a terra é composta por cerca de 3% de ultravioletas (UV), 55% de infravermelhos (IR) e 42% de luz visível. Estes três elementos da radiação correspondem cada um a uma gama de comprimento de onda. O ultravioleta desenvolve-se de 2,8x10^{-7} a 3,8x10^{-7}m, o visível de 3,8x10^{-7} a 7,8x10^{-7}m e o infravermelho de 0,78x10^{-6} a 2,5x10^{-6}m.

A repartição energética da radiação solar total, em função do seu comprimento de onda entre os 0,3 e os 2,5μm (espectro), para uma superfície perpendicular a esta radiação é representada pela seguinte figura.
Comportamento Térmico de Fachadas Ventiladas

Aplicada a edifícios, a radiação com comprimento de onda curto (entre os 0,3 e os 2,5μm) e com comprimento de onda longo (entre os 5 e os 50μm), diz respeito à radiação emitida pelo sol e à radiação emitida pelos corpos à temperatura ambiente respectivamente (Duffie e Beckman 1980).

Ângulos Solares

A posição do sol relativamente a uma dada superfície é descrita pelos ângulos solares definidos na fig. 2.3. A posição exacta do sol em qualquer altura e local pode ser determinada recorrendo a relações trigonométricas (Duffie e Beckman 1980). O ângulo de incidência θ numa dada superfície define-se como sendo o ângulo entre a linha de incidência do sol e a normal à superfície. A altura do sol é definida por α, o ângulo de azimute por Φ e o ângulo de inclinação por β.

Figura 2.3 - Ângulos solares relativos a uma superfície

Radiação de comprimento de onda longo

Aplicada ao canal de ar em particular, a radiação com comprimento de onda longo é emitida pelo vidro que apresenta uma transmissividade entre os 0,3 e os 2,5μm. Posto isto, o vidro pode ser considerado opaco para a gama da radiação de comprimento de onda longo. No caso das fachadas de dupla pele, ar contido no canal entre os panos de envidraçado não apresenta qualquer absorção ou emissão de radiação. O vidro é então assumido como um corpo cinzento apresentando uma emissividade ε na gama de comprimento de onda longo (Saelens 2002).
Absorção Reflexão e Transmissão

Quando a radiação atinge um corpo (sólido, líquido ou gasoso) uma parte α é absorvida, outra ρ é reflectida e a restante τ é transmitida através do corpo.

$$\alpha + \rho + \tau = 1$$

O termo α designa-se por absorvividade, ρ reflectividade e τ por transmissividade.

Fonte: (Yellamraju 2004)

Figura 2.4 - Superfície Exposta à radiação solar

2.2.2 Transferência de calor por Condução

A condução define-se como sendo a transferência de energia de partículas que se encontram a uma temperatura superior para outras adjacentes a estas a uma temperatura mais baixa, devido à interacção entre elas. A condução pode ocorrer em meios sólidos, líquidos ou gasosos. Nos gases e líquidos, a condução deve-se às colisões que ocorrem sem cessar entre moléculas durante o escoamento dos fluidos. Nos sólidos, a condução deve-se à vibração a nível molecular e a electrões livres que transportam energia. A taxa de transferência de calor por condução depende da geometria do corpo, da espessura e do material de que é composto, assim como da diferença de temperatura entre zonas distintas do mesmo corpo. Cada material apresenta um coeficiente de condutividade térmica específico, k [W/m.°K], que varia em função da temperatura desse material. Assim, para 1m de espessura de parede e desenvolvendo-se perpendicularly à sua superfície, tem-se a taxa de
transferência de calor Q [W], por m2 de área por ºK de diferença de temperatura ao longo do corpo de área A de 1m2, em condições estacionárias de transferência de calor (Çengel 2002).

![Diagrama](Figura 2.5 – Condução de calor através de uma parede de Área A e espessura L)

Pela equação da lei de Fourier,

$$\dot{Q} = -(kA) \frac{dT}{dx}$$

sendo,

\dot{Q} - Taxa de transferência de calor [W]

k – Condutividade térmica [W/m.ºK]

A – Área normal à direcção do fluxo de calor [m2]

$\frac{dT}{dx}$ - Gradiente de temperaturas [ºK/m]

O sinal negativo indica o sentido do fluxo de calor de temperaturas mais elevadas para temperaturas mais baixas.

2.2.3 Transferência de calor por Convecção

A convecção é definida como sendo a transferência de energia sob a forma de calor (W) entre um corpo sólido e líquido ou gás que se encontra em escoamento, adjacente a este. O fenômeno envolve uma combinação de efeitos originados por condução devido ao escoamento do próprio fluido. Quanto mais rápido se processar o escoamento, maior a transferência de calor por convecção. Ao cessar o movimento do fluido, a transferência de calor entre o corpo sólido e fluido adjacente dá-se
Comportamento Térmico de Fachadas Ventiladas

puramente por condução de calor. A existência de escoamento, aumenta o processo de transferência de calor entre o corpo sólido e o fluido mas também dificulta a determinação da taxa de transferência de calor (Çengel 2002).

Figura 2.6 - a) Transferência de calor de uma superfície quente para o ar por convecção; b) Arrefecimento de um ovo cozido por convecção forçada e natural

Fonte: (Çengel 2002)
3 Tecnologia

3.1 Classificação das Fachadas Duplas Ventiladas

A classificação das fachadas, pode seguir o seguinte critério:

Tipo de ventilação utilizada

- Ventilação Natural (VN) – Causada pela pressão do vento (processo eólico) e pelo efeito de chaminé (processo térmico).
- Ventilação Mecânica (VM) – Garantida por um ventilador que promove a circulação do ar.
- Ventilação Híbrida (VH) – As necessidade de ventilação e as condições exteriores determinam a utilização de ambas as anteriores em simultâneo ou somente uma delas.

Percursos do Ar no Interior do Canal

O percurso do ar a considerar deve estar de acordo com a localização do edifício (clima onde se insere).

- Ar de exaustão (AE) – A fachada tem como função extrair o ar interior.
- Ar de Insuflação (AI) – A fachada tem como função insuflar ar para o interior.
- Fluxo Reversível (FR) – A fachada actua de acordo com as configurações acima referidas e depende das condições interiores/exteriores e dos sistemas de controlo locais.

- Fluxo Exterior (FE) – O canal de circulação do ar da fachada é ventilado por ar exterior sem ligação com o interior.
- Fluxo Interior (FI) – O canal de circulação do ar da fachada é ventilado por ar interior sem ligação com o exterior.
Fonte: (Marques da Silva e Gosselin 2005) in (Haase 2005c) e (Gosselin 2005)

Figura 3.1 – Percurs do Ar a) AE; b) AI; c) FR; d) FE; e) FI

Normalização das Configurações da Envolvente

Tem como base de referência o Belgium Building Research Institute’s (BBRI), que define os sistemas mais conhecidos e utilizados na Europa.

Contudo esta normalização base pode sofrer várias associações a outros sistemas de classificação, incluindo o método utilizado nos Estados Unidos da América e pode ser representado pelo diagrama abaixo indicado já simplificado (Marques da Silva e Gosselin 2005).

Fonte: (Marques da Silva e Gosselin 2005)

Figura 3.2 - Proposta simplificada de classificação das fachadas integradas avançadas
Comportamento Térmico de Fachadas Ventiladas

- Parede Climatizada (PC) – Está associada ao conceito de fachada/janela climatizada sendo que, a diferença entre elas está na existência ou não de um vão envidraçado. É constituída por um vidro duplo exterior, um vidro simples interior e um sistema de VM acoplado ao sistema centralizado de ventilação do edifício que recircula ar interior por um orifício para o espaço entre os panos exterior e interior. Esta configuração é semelhante ao Módulo.

![Figura 3.3 - Configuração de uma Parede Climatizada](image)

Fonte: (Marques da Silva e Gosselin 2005) in (BBRI 2002)

- Tampão (Tp) – O ar encerrado no interior da fachada, funcionando como um tampão térmico (thermal buffer), ainda que se encontre em contacto com o ar exterior por motivos de equilíbrio de pressões.

![Figura 3.4 - Configuração Tampão](image)

Fonte: (Marques da Silva e Gosselin 2005) in (Haase 2005c)
- Modular (M) – As fachadas de dupla pele podem ser divididos na vertical e na horizontal, originando um canal. As paredes de Trombe podem também ser classificadas como Módulo.

Fontes: a) (Poirazis 2008); b) (Marques da Silva e Gosselin 2005) in (Oesterle, et al. 2001)

Figura 3.5 - Modular

- Coluna de Extracção (CE) – A configuração de Coluna de Extracção é semelhante à Modular mas o ar de exaustão é descarregado do canal para uma coluna localizada lateralmente ao canal e comum a todos os canais do edifício.

Fonte: a) (Poirazis 2008); b) (Marques da Silva e Gosselin 2005) in (Compagno 2002)

Figura 3.6 - Configuração Coluna de Extracção
Comportamento Térmico de Fachadas Ventiladas

- Corredor (C) – Dividida horizontalmente, a fachada forma um corredor normalmente em cada piso. Os orifícios de admissão e de exaustão do ar estão posicionados para que não exista mistura do ar de exaustão com o de admissão do piso seguinte.

![Corredor](a)

![Corredor](b)

Fonte: a) (Poirazis 2008); b) (Marques da Silva e Gosselin 2005) in (Oesterle, et al. 2001)

Figura 3.7 - Configuração Corredor

- Multi Piso (MP) – A configuração Multi Piso não tem o canal de ar particionado. Um caso particular do Multi Piso é a utilização de lâminas orientáveis para sombreamento no exterior, podendo encontrar-se desde a posição de fechadas até totalmente abertas, sendo que, na última posição deixa de funcionar como segunda pele, representada pela Fig. 3.8a. A designação de Fachada Gémea atribuída pela classificação norte americana, pode ser incluída neste género pela Fig 3.8b.

![Multi Piso](a)

![Multi Piso](b)

Fonte: a) (Poirazis 2008); b) (Marques da Silva e Gosselin 2005) in (Perino 2005)

Figura 3.8 - a) Configuração Multi Piso b) Fachada Gémea
3.1.1 Vantagens

Ao serem enumeradas as vantagens desta tecnologia e os benefícios emergentes da sua aplicação, mostra-se absolutamente necessário em fase de projecto ter em conta critérios que beneficiem o desempenho das fachadas.

Diminuição do Consumo Energético e Responsabilidade Ecológica

A diminuição do consumo energético é alcançada diminuindo os ganhos solares em todo o perímetro do edifício. Utilizando um baixo factor solar, é possível minimizar as cargas térmicas nos espaços interiores adjacentes. Em princípio, as fachadas de dupla pele permitem a redução da utilização de recursos naturais, isto é, a diminuição do consumo energético durante o tempo de operação destas. Não existem estudos que relacionem os custos de operação com o impacto energético resultante da construção (Arons 2000).

Ventilação Natural

Uma das principais vantagens é a possibilidade de ventilação natural. É possível a sua utilização em diferentes climas, orientações, localizações e até tipos diferentes de edifícios, garantindo desta forma insuflação de ar novo depois e até durante o horário de expediente. A escolha da configuração de dupla pele pode ser determinante na temperatura, velocidade e qualidade do ar a insuflar no espaço interior. A ventilação será um sucesso na redução do consumo energético e melhoria do conforto se todos os pressupostos necessários ao seu bom funcionamento forem devidamente acautelados na fase de projecto (Poirazis 2008). As fachadas de dupla pele são uma solução para que possam ser utilizadas janelas em zonas ventosas, devido à protecção que o pano exterior oferece às janelas que se encontram embutidas no pano interior. Contudo, esta poderá não ser uma boa solução para climas quentes devido ao ar quente que circula entre os dois panos embora, estas janelas manuais possam ser utilizadas durante a noite para ventilação (Arons 2000).
Comportamento Térmico de Fachadas Ventiladas

Ventilação em horas de Não Ocupação

Na estação de arrefecimento, os ganhos de calor do edifício ao longo do dia são muito elevados. O arrefecimento destes espaços nos horários nocturnos, recorrendo a “free-cooling” disponibilizado pela ventilação levam à redução do consumo energético. (Poirazis 2008). Contudo, a ausência de radiação solar, leva a que cesse durante a noite, o efeito de chaminé. A ventilação poderá ter de deixar de ser natural para passar a ser forçada.

Redução do Efeito do Vento

Particularmente para os edifícios arranha-céus, as fachadas de dupla pele conferem protecção de rajadas de vento ao pano interior e reduzem também a pressão estática exercida sobre o pano exterior, consequentemente é efectuada com maior facilidade a operação das janelas e trabalhos de manutenção ao edifício.

Redução de Custos

O custo da instalação das fachadas de dupla pele é mais elevado relativamente aos sistemas convencionais de pano simples. Custos adicionais podem variar significativamente de 20% para 300%. As fachadas que podem vir pré montadas até à obra, mostram-se economicamente mais competitivas comparativamente aquelas que têm de ser montadas no local. Fachadas com panos interiores em módulos metálicos flexíveis em vez de vidro, representam uma diminuição de custos. Torna-se importante verificar o custo/benefício de um projecto, assim como ter em conta custos associados à manutenção do edifício. É ainda importante considerar a redução dos custos de aquisição/exploração dos sistemas de AVAC e só depois tomar uma decisão (Arons 2000).

Diminuição do Ruído

As fachadas de dupla pele são também actualmente utilizadas para a redução da percepção do ruído urbano. Os ganhos na redução do ruído aumentam quando é utilizado vidro como reflector do som (Arons 2000). O tipo de fachada ventilada e o número de aberturas para o exterior condicionam negativamente o desempenho acústico do edifício no que diz respeito à poluição sonora interna e
externa. Jager, (Cit. por Poirazis 2006) afirma que para o isolamento acústico, deve ser considerado um mínimo de 100mm de largura a separar o local ocupado da fonte de poluição sonora adjacente.

Controlo e Conforto dos Ocupantes

É necessário ter em conta a temperatura da superfície interior do pano envidraçado, uma vez que esta superfície funciona como fonte emissora de radiação infravermelha durante a estação de arrefecimento e como sumidor de calor na estação de aquecimento. Saelens refere que as fachadas de dupla pele podem resolver este problema, assim que a temperatura da superfície do pano interior seja aproximada à temperatura do espaço interior, melhorando o conforto térmico na periferia próxima do pano envidraçado. Contudo isto pode não ser sempre verdade quando a fachada não é ventilada ou quando a temperatura do vidro aumenta para o caso do mesmo ser um pano simples. O conforto dos ocupantes está também dependente da possibilidade destes poderem controlar a intensidade luminosa recorrendo ao manuseamento de persianas/sombramentos e a capacidade de controlar a deslocação do ar com recurso a janelas de actuação manual (Arons 2000).

Inclusão de Sistemas de Sombreamento no Interior do Canal

Os sistemas de sombreamento encontram-se totalmente protegidos das agressões exteriores (Poirazis 2008). Esta situação traduz-se numa redução de custos de manutenção e no investimento inicial, uma vez que os sistemas de sombreamento não terão de ser tão robustos caso ficassem colocados no exterior.

Segurança

A utilização do canal de ar pode ser prevista como zona de fuga em situação de incêndio. O pano adicional da fachada funciona quase como que uma barreira física que aumenta a sensação psicológica de segurança. Também permite a abertura das janelas para o interior do canal, o que por si só melhora a segurança dos ocupantes comparativamente com aquelas directamente expostas para o exterior (Poirazis 2008). Contudo, estas afirmações podem ser questionáveis, sendo de todo necessário responder a estas e outras situações relacionadas especificamente com a segurança destes edifícios em documentos regulamentares e de normalização.
Estética

A fachada de dupla pele oferece uma excelente oportunidade aos arquitetos de melhorar a qualidade da transparência, profundidade e disposição do recheio interior comparativamente com as fachadas em alvenaria que apresentam uma imagem extremamente volumosa.

3.1.2 Desvantagens

As desvantagens serão obviamente questões a ter em consideração também durante a fase de projecto, devendo ser os critérios aplicados capazes de reduzir ao máximo e até suprimir os impactos negativos desta tecnologia tanto quanto possível.

Custos de Construção

Comparativamente às fachadas simples, os custos de construção são superiores (Poirazis 2008).

Protecção ao Fogo

Não se encontra devidamente clarificada se a questão é ou não preocupante. O problema regulamentar será uma preocupação uma vez que, não existe qualquer norma ou regulamento aplicável especificamente às fachadas de dupla pele. Contudo, alguns autores mencionam a hipótese de existir problemas na passagem de fumo entre os compartimentos interiores. (Poirazis 2008). Segundo Marques da Silva e Gosselin, o pano exterior reduz a capacidade de exaustão de fumo. O canal de ar aumenta o risco de disseminação de fogo/fumo pelo interior do edifício de compartimento para compartimento e entre pisos. Dificulta o acesso à zona sinistrada interior. Aumenta o risco de queda de vidros partidos na via pública.
Redução da Área Útil

A largura geralmente utilizada pelo canal varia desde 20cm até 2metros, resultando numa redução da área útil. Mutas vezes, a largura do canal influência directamente o interior (isto é, quanto mais largo for o canal, menor o calor transmitido por convecção quando o canal se encontra fechado) e por vezes, quanto mais largo for o canal, melhor será o conforto em zonas próximas do pano interior. Portanto é de extrema importância a obtenção da largura óptima do canal de forma a ser o mais estreito possível para que a diminuição da área útil seja a menor possível (Poirazis 2008).

Custos Adicionais de Manutenção e Operação

Comparativamente às fachadas simples, as fachadas duplas apresentam custos mais avultados para a sua operação, inspecção, e manutenção (Poirazis 2008).

Problemas de Sobraaquecimento

Caso a fachada não se encontre devidamente dimensionada de acordo com as especificidades do local e do clima onde será implantada, o sobreaquecimento do canal de ar será um sério problema (Poirazis 2008).

Velocidade Exagerada do ar no interior do canal

Ocorre na maioria dos casos em Multi Piso elevados. Diferenças de pressão elevadas no interior do canal em situação de ventilação natural (Poirazis 2008).

Aumento do Peso da Construção

Com o pano adicional, colocado no exterior, o peso do edifício aumenta, assim como os custos associados (Poirazis 2008).
Diminuição da Iluminação Natural

Devido ao pano exterior adicional, a penetração da luz natural fica mais dificultada (Poirazis 2008), relativamente a um único pano envidraçado.

Isolamento Acústico

Eventualmente, devido a má concepção pode ocorrer a propagação de ruído de piso para piso ou de sala para sala pode ocorrer (Poirazis 2008). Segundo Oesterle, et al, (Cit. por Marques da Silva e Gosselin 2005), existe a possibilidade de incluir aberturas manuais para o exterior quando os níveis de ruído se situem entre os 68 e os 75 dB(A). Contudo, o ruído produzido no interior pode ser reflectido pelo pano exterior de volta ao espaço ocupado quando aberturas interiores se encontrem abertas, originando uma possível transmissão do som de um compartimento para outro e de piso para piso.

3.2 Características do Vidro

Sendo o vidro o principal elemento nas fachadas de dupla pele, é importante enumerar as principais características que influenciam directamente o comportamento térmico da fachada e o conforto interior que advém directamente da performance da fachada (conforto térmico e visual).

Como referido no capítulo dos processos de transferência de calor, quando submetido a estes fenómenos, o vidro apresenta as mesmas propriedades físicas que qualquer outro corpo sólido, com a particularidade deste ser permeável à radiação de comprimento de onda curto e opaco (não se deixa atravessar) a comprimento de onda longos.
Com comportamento térmico de fachadas ventiladas

- **Reflectividade** – A reflectividade representa a maior ou menor aptidão do vidro para impedir que a radiação incidente atravesse essa superfície envidraçada. Parte dessa radiação é reflectida e a outra transmitida. O ângulo de reflexão da radiação é igual ao ângulo de incidência e, neste caso, a reflexão designa-se como sendo regular ou especular. Dado que o vidro é um corpo que apresenta alguma rugosidade, a reflexão destas superfícies ocorre indiscriminadamente em todas as direções, tendo como designação reflexão difusa.

- **Absorvidade** – A absorvidade do vidro define a capacidade que este tem em absorver a radiação que o atravessa sob a forma de calor. Quando a diferença de temperaturas entre a superfície do vidro e o ar envolvente possibilitem o início da transferência de calor, parte dessa energia será transportada para o ar envolvente por convecção.
Comportamento Térmico de Fachadas Ventiladas

- **Transmissividade** – É a razão entre a radiação solar que atravessa um corpo e a radiação solar total que chega a esse mesmo corpo. Esta razão é directamente influenciada pela espessura e composição do corpo, assim como o ângulo de incidência nessa superfície.

- **Emissividade de uma superfície real** – As superfícies reais não são perfeitamente difusas, assim, a intensidade de radiação não é constante em todas as direcções. A emissividade de um corpo ou superfície real define-se como a razão entre o fluxo radiativo (E) emitido por um corpo e o emitido por um corpo negro (Eb) à mesma temperatura $\varepsilon = \frac{E}{E_b}$. Assim, a parcela restante da radiação solar incidente atinge a segunda camada de vidro, onde ocorrem os mesmos fenómenos já descritos.

O factor solar do vidro (g) – Define-se como sendo a percentagem da radiação solar que efectivamente entra no espaço mais a radiação retransmitida pelo vidro (dependente da absorvividade e temperatura do vidro) para o interior e ainda, o calor transmitido por efeitos convectivos entre o vidro e o ar interior. Posto isto, é preciso ter em conta que o factor solar do vidro fornecido pelo fabricante pode variar consideravelmente, dependendo da temperatura do vidro, da temperatura do ar no canal e no interior. Quanto menor o factor solar, mais eficazmente o vão envidraçado protege o interior dos ganhos energéticos provenientes da radiação solar.

Coeficiente global de transmissão de calor – O coeficiente global de transmissão de calor U, é expresso em [W/m².°K]. É definido como sendo o inverso da soma algébrica de todas as resistências térmicas associadas a um determinado material em estudo ou camadas de materiais, por exemplo várias camadas de vidro e caixas-de-ar, etc. Quanto maior o valor e U, menor o efeito de isolamento e por consequência, maiores as perdas térmicas e vice-versa. O coeficiente global de transferência de calor pode ser diminuído de forma a aumentar a resistência à transmissão de calor (aumentar o isolamento), através do recurso a vidro duplo.

- **Orientação das fachadas envidraçadas**

A orientação das fachadas é sem dúvida alguma o factor mais importante quando se opta por construir uma fachada de dupla pele. A orientação vem ditar o tipo de ventilação a utilizar e a configuração, mais indicados para combater o sobreaquecimento do sistema.
Fachadas a norte

Normalmente esta é a orientação onde a incidência da radiação solar é mais baixa, quando estamos a falar de locais situados no hemisfério norte do planeta. Os locais orientados a norte não beneficiam praticamente de sol, assim, o efeito térmico que origina o escoamento dentro do canal (efeito de chaminé) é mais reduzido e por isto mesmo vemos aumentado o leque de opções para a escolha da melhor configuração de fachada e para a circulação de ar, seja ela natural, mecânica ou híbrida.

A qualidade da luz natural é muito constante, é uma das razões pelas quais os ateliês de artistas procuram frequentemente essa orientação. Adapta-se também em particular nas salas de leitura, ou a locais equipados com computadores.

Fachadas a sul

As fachadas orientadas a sul beneficiam de uma exposição solar máxima no Inverno (o sol encontra-se mais baixo). Esta orientação deve ser utilizada para aumentar os ganhos térmicos durante a estação de aquecimento recorrendo por exemplo a vidros de isolamento térmico que permitem aumentar a largura dos vãos, sem sofrerem grandes perdas térmicas. As fachadas orientadas a sul podem ser protegidas recorrendo a sistemas de sombreamento, reduzindo assim os ganhos solares directos no espaço interior.

Fachadas a Este e a Oeste.

As fachadas orientadas a Este ou a Oeste recebem no Verão a energia máxima proveniente do sol, a Este, esses ganhos ocorrem de manhã e a Oeste, durante a tarde. Quando o sol se encontra mais próximo do horizonte é conveniente recorrer a sistemas de sombreamento de forma a limitar os ganhos, assim como o sobreaquecimento da fachada e o encandeamento para os ocupantes. As fachadas orientadas a Oeste têm particular interesse uma vez que, a temperatura exterior é muitas das vezes elevada (ao final do dia), assim como a radiação directa na fachada, podendo originar os inconvenientes já mencionados do sobreaquecimento e do encandeamento, assim como originar um aumento indesejado da temperatura interior, que deve ser mantida dentro dos parâmetros de conforto ideais.
4 Princípio de Funcionamento

No capítulo 1, as definições das fachadas de dupla pele propostas por diversos autores e no capítulo 3 a classificação detalhada das configurações de fachadas existentes explicam de uma forma bem clara o modo como as fachadas de dupla pele funcionam.

Contudo, as fachadas de dupla pele têm como principal objectivo o aumento do conforto térmico com recurso a um canal de ar formado por dois panos de vidro que constituem a própria fachada do edifício, por onde é circulado ar (interior, exterior ou ambos) que tem como principal objectivo “isolar” o interior através da remoção do calor aí acumulado. Esse ar pode ter como destino o interior do edifício, sendo conduzido até ao sistema de AVAC para fins de aquecimento ambiente (estação de aquecimento) ou para o exterior, caso o calor removido do canal pela ventilação seja indesejado (estação de arrefecimento) ou ainda funcionar unicamente como buffer, configuração em que o canal de ar se encontra encerrado (não existe circulação de ar).

Os processos de transferência de calor definidos também no capítulo 2 são de extrema importância para a compreensão do funcionamento termodinâmico da fachada.

4.1 Forças de Influência Directa no Funcionamento das Fachadas Ventiladas

O factor de influência directa no desempenho das fachadas ventiladas é a existência de fluxo de ar no interior do canal de ar. Para que exista fluxo de ar dentro do canal é necessário que exista uma diferença de pressões entre dois pontos (entrada e saída). Essa diferença de pressões ocorre por meio de forças que actuam directamente na fachada e dão origem ao fluxo.

As forças que influenciam directamente a performance das fachadas ventiladas são:

- O Vento
- O Efeito Chaminé
- Ventilação Mecânica
4.1.1 O Vento

O vento actua nos edifícios, criando uma pressão positiva na sua superfície virada a barlavento e uma pressão negativa na superfície localizada a sotavento. A equação de Bernoulli pode ser utilizada para determinar a pressão exercida pelo vento sobre as fachadas dos edifícios em função da sua velocidade. A distribuição da pressão estática na envolvente do edifício é expressa por valores adimensionais, os coeficiente de pressão \((C_p) \), que se encontram definidos na equação 5.4. O coeficiente de pressão varia também para as superfícies orientadas a barlavento ou a sotavento. Existem ainda os coeficientes de pressão interiores que também desempenham um papel importante na pressão total exercida na envolvente.

A soma aritmética das pressões de estagnação que actuam na envolvente, corrigidas com os coeficientes de pressão referidos, resulta no total líquido da pressão que é exercida pelo vento na envolvente.

Um sumário dos coeficientes de pressão típicos a aplicar, podem ser encontrados no capítulo 14 da ASHRAE Handbook of Fundamentals (ASHRAE 1997).
Comportamento Térmico de Fachadas Ventiladas

- Influência da geometria da cobertura nos diferenciais de pressão motivados pelo vento

Coberturas com pouca inclinação, tendem a desenvolver pressões negativas (efeito de sustentação). Para coberturas com ângulos de inclinação acima de 25º, expostas a barlavento, tendem a desenvolver pressões positivas e aquelas expostas a sotavento, tendem a desenvolver pressões negativas.

Fonte: (Straube 2007)

Figura 4.2 - Efeitos de pressão causados pela incidência do Vento em fachadas distintas

4.1.2 Efeito de Chaminé

Quando dois volumes de ar iguais se encontram a temperaturas diferentes, por influência da força gravítica, o volume de ar à temperatura mais baixa tende a descer devido ao aumento da sua massa volúmica e a outra, à temperatura mais elevada tende a subir, sobrepondo-se a outras camadas de ar mais frias devido à redução da sua massa específica.

Pela equação dos gases perfeitos,

\[
\frac{P_1 v_1}{T_1} = \frac{P_2 v_2}{T_2}
\]

Onde \(v \) [m³/kg] representa o volume específico do ar, o seu inverso é a massa volúmica do ar, \(\rho \) [kg/m³]. A equação dos gases perfeitos toma então a seguinte forma,

\[
\frac{P_1}{T_1 \rho_1} = \frac{P_2}{T_2 \rho_2}
\]
Comportamento Térmico de Fachadas Ventiladas

Rearanjando novamente a equação dos gases perfeitos vem,

\[\frac{\rho_1}{\rho_2} = \frac{T_2}{T_1} \frac{P_1}{P_2} \]

Considerando uma evolução isobárica vem,

\[\frac{P_1}{P_2} = 1 \]

\[\frac{\rho_1}{\rho_2} = \frac{T_2}{T_1} \]

Conclui-se que, quando o ar sofre um aumento de temperatura \((T_2 > T_1)\) num processo isobárico, a relação \(\rho_1/\rho_2\) aumenta, o que significa que \(\rho_2\) diminui com o aumento da temperatura.

A descida do ar mais frio para cotas inferiores e a subida do ar mais quente para cotas superiores resulta numa diferença de temperaturas da base para o topo, pressupondo desta forma, a existência de várias camadas a diferentes temperaturas e para que tal ocorra é necessário um tempo específico para a separação do ar nas diferentes camadas, a este fenómeno dá-se o nome de estratificação de temperaturas do ar. Na situação em que o fluxo de ar é constante, o tempo necessário para a formação das camadas de ar é insuficiente para que ocorra estratificação do ar

Aplicado às fachadas de dupla pele, quando dotadas de aberturas para ventilação na base e no topo, o ar aquecido tende a subir, saindo pela abertura superior. O espaço deixado livre é preenchido por ar admitido por depressão na abertura inferior, a este fenómeno dá-se o nome de efeito de chaminé. O efeito de chaminé é directamente influenciado pelo diferencial de temperaturas entre o interior e o exterior, altura do canal de ar, a localização das aberturas de admissão e rejeição do ar, assim como as suas dimensões e elementos filtrantes.

Na estação de aquecimento, o efeito de chaminé tende a ser mais elevado devido ao diferencial de temperaturas (interior e exterior). O ar quente no interior do canal, aquecido pelo efeito estufa provocado pelos panos envidraçados e por aquecimento convectivo, (caso o canal seja dotado de sistemas de sombreamento) tende a ser rapidamente expulsdo do interior do canal devido ao ar que
Comportamento Térmico de Fachadas Ventiladas

entra muito mais frio do ambiente exterior ou interior, acelerando o processo de tiragem de ar da fachada. Note-se que o processo de tiragem acelera quando o diferencial de temperaturas aumenta.

Na estação de arrefecimento, o diferencial de temperaturas não é tão acentuado como na estação de aquecimento. O efeito de chaminé terá menos influência no fluxo de ar que percorre o canal de ar e por isso mesmo, a necessidade de prever nalguns casos e para determinados climas mais quentes, ventilação mecânica.

![Figura 4.3 - Efeito Chaminé](image)

Fonte: (Poirazis 2008)

4.1.3 Ventilação Mecânica

A ventilação mecânica é geralmente aplicada em fachadas ventiladas quando em fase de projecto se estima que a ventilação natural por si só não é capaz de garantir o desempenho térmico óptimo da fachada. A ventilação mecânica é também necessária para dirigir o ar aos equipamentos de AVAC que virão a aproveitar o ar de exaustão para aquecimento do espaço interior.
Figura 4.4 - Insuflação do ar no espaço interior com recurso à ventilação mecânica

Por outro lado, a ventilação mecânica poderá ser utilizada para contrariar o processo natural de escoamento do ar ou seja, o ar pode efectuar o percurso no interior do canal em sentido inverso (admissão nos topos e rejeição na base), sendo insuflado junto ao chão. Contudo e até à data ainda não existem estudos que comprovem o bom desempenho deste processo de ventilação.
5 Metodologia

5.1 Caracterização da Célula de Teste

A célula de teste utilizada para a recolha de dados experimentais encontra-se situada no Campus do LNEC em Lisboa, orientada a Sudeste (160º), livre de obstáculos que impeçam uma boa exposição solar.

A célula de teste é caracterizada como sendo uma mini fracción constituída unicamente por uma sala em construção de alvenaria, tendo somente uma face transparente para o exterior e orientada a Sudeste. O acesso ao interior da sala é efectuado através de uma porta interior em comunicação com um corredor fechado que, por sua vez comunica com o exterior por meio de uma porta exterior. O canal de ar dispõe de oito grelhas para a passagem de ar com 0,225m de altura e 1,63m de comprimento (quatro colocadas no pano interior e quatro no pano exterior). As lâminas das grelhas podem ser ajustadas para as posições de totalmente aberto ou totalmente fechado.

A sala (LxHxP – 3,6; 2,8; 3,7m³) encontra-se não climatizada e totalmente vazia e é possível utilizar o corredor adjacente para VN.

Figura 5.1 - Vista pelo interior da Fachada Ventilada
5.1.1 Envolvente

A envolvente opaca da célula de teste é constituída pelos seguintes elementos:

- Paredes: blocos de betão celular autoclavado (YTONG) com espessura de 0,30m e reboco, interior e exterior de 0,015m. Espessura total de 0,33m.
- Estrutura: pilares de betão com secção de 0,20x0,20 m², revestidos interiormente por plaquetas do material das paredes com 0,050 m de espessura.
- Cobertura: laje com 0,14m de espessura, revestida interiormente por plaquetas do material das paredes com 0,075m de espessura. Tela impermeabilizante exterior (valores standard).
- Alçapão de secção quadrada metálico 0,5mx0,5m a meio da cobertura.
- Porta para o corredor: Constituída em madeira maciça leve.
- Pavimento: betonilha

Tabela 5.1 - Resumo das características dos materiais utilizados

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) [kg/m³]</th>
<th>(\lambda) [W/m°C]</th>
<th>(C_p) [kJ/kg K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betão</td>
<td>2300</td>
<td>1,75</td>
<td>0,880</td>
</tr>
<tr>
<td>YTONG</td>
<td>650</td>
<td>0,20</td>
<td>1,000</td>
</tr>
<tr>
<td>Argamassa</td>
<td>1950</td>
<td>1,15</td>
<td>0,653</td>
</tr>
</tbody>
</table>

- Vidros

Tabela 5.2 - Resumo das características dos vidros utilizados

<table>
<thead>
<tr>
<th>Pano</th>
<th>Tipo de Vidro</th>
<th>U [W/m²°C]</th>
<th>(\lambda) [W/m°C]</th>
<th>(g) [%]</th>
<th>Absorvividade Ae [%]</th>
<th>Transmissividade Térmica Te [%]</th>
<th>Transmissividade visível Tv [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior</td>
<td>Simples Incolor</td>
<td>5,7</td>
<td>1,2</td>
<td>80</td>
<td>18</td>
<td>75</td>
<td>87</td>
</tr>
<tr>
<td>Interior</td>
<td>Duplo (6-15-5)</td>
<td>1,4</td>
<td>1,2</td>
<td>41</td>
<td>34+3</td>
<td>36</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Incolor Baixo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Protecção solar

– Sistema de sombreamento por persianas venezianas de cor clara.
5.1.2 Descrição dos Ensaios Realizados

O período de recolha de dados foi de 4 meses (desde 8 de Abril de 2008 a 22 de Agosto de 2008). O período é de facto muito curto para que possam ser retiradas conclusões exactas quanto ao verdadeiro comportamento térmico das fachadas de dupla pele durante um ano típico do clima em Portugal.

Contudo, o período em causa abrange os meses tipicamente mais quentes em Portugal, tendo a intenção de verificar o comportamento térmico e a variação de temperatura no canal do ar das diferentes configurações utilizadas. As configurações utilizadas pressupõem um esquema de ensaio, onde é possível alterar a fachada, i) a posição das persianas venezianas na base (nível 1), a meio (nível 2) e no topo (nível 3), e; ii) a inclinação das lâminas 0º (totalmente abertas), 45º (parcialmente abertas) e 90º (totalmente fechadas).

A monitorização teve em conta a medição da temperatura do ar, do vidro e do sombreamento nas posições que mais à frente se identificam. Foram ainda registados valores de fluxos de calor, e radiação solar no exterior (radiação horizontal e vertical) e no interior (radiação que chega ao interior, proveniente directamente do sol).
Todos os dados foram recolhidos a partir de um dispositivo de aquisição de dados, com registos de 10 em 10 minutos de valores médios a partir dos lidos com um período de aquisição de 30 segundos.

As grelhas de admissão e rejeição de ar que se encontravam abertas, estiveram totalmente abertas durante os ensaios realizados.
- *Esquemas de Ensaios*

Os esquemas utilizados para o registo dos dados experimentais são os que a seguir se indicam:

Figura 5.3 - Fluxo Exterior

Figura 5.4 – Fluxo de Insuflação
Comportamento Térmico de Fachadas Ventiladas

Figura 5.5 – Fluxo de Extracção

Figura 5.6 - Fluxo Interior
- Caracterização do sistema de recolha de dados
Comportamento Térmico de Fachadas Ventiladas

- T_{vin} – Temperatura da superfície envidraçada interior do vidro interior.
- T_{vin}e – Temperatura da superfície envidraçada exterior do vidro interior.
- T_{ven} – Temperatura da superfície envidraçada interior do vidro exterior.

Quando é utilizado sistema de sombreamento:

- $T_{\text{ven prot}}$ – Temperatura da superfície envidraçada interior do vidro exterior com sistema de sombreamento.
- T_{sn} – Temperatura do sistema de sombreamento.
- T_{ain2} – Temperatura do ar na zona posterior (entre o sombreamento e o vidro interior) ao sistema de sombreamento.
- T_{aen} – Temperatura do ar na zona anterior (entre o sombreamento e o vidro exterior) ao sistema de sombreamento.
- T_{in} – Temperatura do ar de admissão pela abertura inferior.

- F_{lix} e F_{ixe} – Fluxo de calor em [W/m²], nas superfícies envidraçadas interior exterior do vidro interior e exterior respectivamente.

- R_{vint} – Radiação solar medida na vertical no interior da sala em [W/m²].
- R_{hext} e V_{ext} – Radiação solar medida na horizontal e na vertical no exterior em W/m².
- T_{in} – Temperatura interior da sala.
- T_{amb} – Temperatura exterior ambiente.
- **Caracterização do sistema de aquisição de dados**

O equipamento utilizado apresenta as seguintes quantidades e características:

Dois piranómetros com termopilha de classe 1 Kipp&Zonen CM5 (com desvios máximos de linearidade de \(\pm 2\%\) para a gama de 0-2000W/m\(^2\) erro de coseno < \(\pm 5\%\)).

Uma célula fotoeléctrica Delta-T ES (com desvios máximos de linearidade de \(\pm 1\%\) para a gama de 0-1500W/m\(^2\) e precisão de \(\pm 5\%\) aos 20°C).

Um anemómetro de copos NRG#40 (entre 1-96m/s com precisão de 0.1m/s em leituras entre 5 e 25m/s) e um cata-vento NRG#200P (entre 0° e 360°) com aquisição de dados num logger Ammonit (com resolução de 0.1 m/s e 1°) situado num suporte a 6m do chão, nas medições da célula de teste.

Cinquenta e três termopares do Tipo T (cobre: constantan) com 0.2mm de espessura, revestidos por isolamento eléctrico e soldados por descarga eléctrica no DE Civil-IST.

Unidade de aquisição de dados Data Taker 515 (com um erro estimado em 0.15% da escala aos 25°C).

Dois fluxímetros Hukselux HFP01 com sensor de termopilha (entre -2000 e 2000 W/m\(^2\))
Comportamento Térmico de Fachadas Ventiladas

5.2 Modelo Matemático

A compreensão dos fenómenos que ocorrem no interior do canal do ar e a aplicação das expressões resultantes da modelação matemática do sistema, permitem tirar conclusões fundamentadas. O fenómeno da transferência de calor que decorre na fachada por acção conjunta do efeito de chaminé e do vento passa a ser justificado pelos seguintes factores de influência directa sobre a fachada.

5.2.1 O Processo Térmico

Das diferenças de temperatura entre o ar interior e exterior, resulta uma diferença de massa volúmica do ar que gera diferentes gradientes de pressão hidrostática, dando origem a um escoamento por diferença de pressão (efeito chaminé).

Quando a temperatura exterior é menor que a temperatura interior $T_e < T_i$, a admissão de ar dá-se à cota (z_1) inferior e é rejeitado à cota (z_2) superior. Quando a pressão do ar exterior iguala a do ar interior $(P_e = P_i)$, origina uma “fronteira” entre a abertura inferior e superior que toma o nome de plano neutro (pl.n.)*, ocorrendo inversão do sentido do fluxo.

Figura 5.9 - Desequilíbrio de pressões devido a diferenças de temperatura

* A localização do plano neutro não é objecto de estudo do presente trabalho, pelo que não será aqui abordado
É assim possível calcular a diferença de pressões com origem térmica \(\Delta P^T \), a partir das respectivas pressões hidrostáticas, exterior e interior,

\[
\begin{align*}
\Delta P_1 &= P_{1E} - P_{1I} = (P_{0E} - \rho_E g Z_1) - (P_{0I} - \rho_I g Z_1) = \Delta P_0 - \Delta \rho g Z_1 \\
\Delta P_2 &= P_{2E} - P_{2I} = (P_{0E} - \rho_E g Z_2) - (P_{0I} - \rho_I g Z_2) = \Delta P_0 - \Delta \rho g Z_2 \\
\Delta P^T &= \Delta P_1 - \Delta P_2 = \Delta \rho g \left(\frac{Z_2 - Z_1}{2}\right) = \Delta \rho g \frac{H}{2} \tag{5.1}
\end{align*}
\]

Pela aproximação de Boussinesq temos \(\Delta \rho/\rho \approx \Delta T/T \) e pela Lei dos Gases Perfeitos (admitindo o ar incompressível), vem que \(\rho/\rho_0 \approx T_0/T \) e a equação 5.1 toma a seguinte forma,

\[
\Delta P^T = \frac{\rho_0 T_0}{T} g \frac{\Delta T H_{12}}{2} \tag{5.2}
\]

Tendo em conta que \(\rho_0 T_0/T^2 \approx 0,0043 \) para \(280K < T < 290K \) (\(\equiv 23 < \Delta T = T_I - T_E < 8 \)) vem,

\[
\Delta P^T = 0,021 H_{12} \Delta T \ [Pa] \tag{5.3}
\]

Fonte: (Marques da Silva 2003)

Estratificação

Segundo (Etheridge et al. 1996) Cit. por (Marques da Silva 2003), a estratificação resulta de fenômenos de convecção natural devidos a fontes internas de calor, que alteram a posição do plano neutro e os perfis de velocidades através das aberturas.

Caso a zona mais quente se encontre fortemente estratificada, dá-se o aumento da diferença de temperaturas à medida que vamos subindo de cota, originando um aumento da velocidade do escoamento para as cotas localizadas mais acima e consequentemente dá-se o deslocamento do plano neutro para posições mais elevadas.
5.2.2 O vento

O vento actua de diferentes formas sobre um edifício, dependendo da sua incidência, da forma do próprio edifício, da sua incidência e dos obstáculos ao redor do edifício em estudo (orografia e rugosidade do local onde está implantado).

A acção do vento resulta numa distribuição de pressões sobre a envolvente dos edifícios sendo que, a envolvente de barlavento se encontra normalmente em sobrepressão, encontrando-se as restantes em depressão, dando origem a um fluxo de ar através dos espaços internos e no sentido de barlavento para sotavento. O diferencial de pressões originado pelo vento, pode ser obtido a partir de Coeficientes de pressão local, C_p, nas zonas do edifício onde existam aberturas, cuja expressão toma a seguinte forma,

$$C_p = (P - P_\infty)/(\rho U_\infty^2/2)$$

A quantificação de C_p, é efectuada, tendo como referência a cota da cobertura do edifício em estudo, neste caso, U_∞ foi registada a 6m do chão.

Os valores de C_p foram obtidos através de ensaios sobre um modelo à escala no túnel de vento do LNEC, tendo sido obtidos valores para as posições correspondentes às grelhas em estudo na célula de teste.

Tabela 5.3 - Coeficientes de Pressão locais do vento, obtidos em túnel de vento com modelo à escala

<table>
<thead>
<tr>
<th>Orientação</th>
<th>grelha sup. dir.</th>
<th>grelha sup. esq.</th>
<th>grelha inf. dir.</th>
<th>grelha inf. esq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-0,24</td>
<td>-0,21</td>
<td>-0,19</td>
<td>-0,05</td>
</tr>
<tr>
<td>NE</td>
<td>-0,35</td>
<td>-0,33</td>
<td>-0,28</td>
<td>-0,15</td>
</tr>
<tr>
<td>E</td>
<td>0,06</td>
<td>0,05</td>
<td>0,10</td>
<td>0,06</td>
</tr>
<tr>
<td>SE</td>
<td>-0,01</td>
<td>-0,02</td>
<td>0,00</td>
<td>-0,03</td>
</tr>
<tr>
<td>S</td>
<td>-0,03</td>
<td>-0,02</td>
<td>-0,06</td>
<td>-0,09</td>
</tr>
<tr>
<td>SSO</td>
<td>0,01</td>
<td>0,01</td>
<td>-0,02</td>
<td>-0,04</td>
</tr>
<tr>
<td>OSO</td>
<td>-0,11</td>
<td>-0,25</td>
<td>-0,11</td>
<td>-0,24</td>
</tr>
<tr>
<td>O</td>
<td>-0,08</td>
<td>-0,15</td>
<td>-0,03</td>
<td>-0,05</td>
</tr>
<tr>
<td>ONO</td>
<td>0,01</td>
<td>-0,07</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>NNO</td>
<td>0,01</td>
<td>0,03</td>
<td>0,04</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Nota: A posição da grelha tem em conta a vista pelo interior da célula de teste
A variação do coeficiente de pressão resultante do efeito cônico é a diferença entre as médias dos coeficientes de pressão para as grelhas inferiores e superiores.

\[
\Delta C_{p12} = \left(\frac{C_p gr. inf. dir. + C_p gr. inf. esq.}{2}\right)_1 - \left(\frac{C_p gr. sup. dir. + C_p gr. sup. esq.}{2}\right)_2
\]

onde, 1 se refere à grelha de admissão e 2 à grelha de rejeição de ar.

É agora possível calcular o diferencial de pressões de origem cônica,

\[
\Delta P^E = \frac{1}{2} \rho U^2 \Delta C_{p12}
\]

Fonte: (Marques da Silva 2003)

Acção conjunta

Da combinação do efeito térmico e cônico, é possível estimar o caudal de ar. A velocidade linear do ar nas grelhas de admissão e exaustão de ar pode ser obtida da seguinte forma,

\[
U = C_d \sqrt{\frac{2}{\rho} \times (\Delta P^T + \Delta P^E)} \ [m/s]
\]

Fonte: (Marques da Silva 2003)

sendo,

- \(C_d\) - Coeficiente de descarga da grelha (0,4 valor estimado)
- \(\Delta P^T\) - Variação da pressão à saída e à entrada do canal de origem térmica [Pa]
- \(\Delta P^E\) - Variação da pressão à saída e à entrada do canal de origem cônica [Pa]
- \(\rho\) - Massa volumétrica do ar à temperatura média do ar do canal [kg/m³]
Para a massa volúmica do ar, utilizou-se a seguinte expressão:

\[
\rho = 1,28 - (0,0046 \times \Delta T) + (10,95 \times 10^{-6} \times \Delta T^2)
\]

Dos dados registados ao longo da campanha de medição, verificou-se que o canal se encontrava durante as horas diurnas, grande parte do tempo a variar entre 40ºC e 45ºC, intervalo a que corresponde 1,1 aproximadamente. Foi assumido para efeitos de cálculo, \(\rho = 1,1 kg/m^3\) para o ar no interior do canal e \(\rho = 1,23 kg/m^3\) para o ar exterior.

Posto isto, o caudal de ventilação obtido pela acção conjunta dos efeitos térmico e eólico pode ser estimado do seguinte modo,

\[
Q = 3600 \times U \times S \ [m^3/h]
\]

sendo,

\(S\) – Área da secção de passagem do ar no interior do canal \([m^2]\)\(^*\)

5.2.3 Indicadores de eficiência e avaliação do comportamento térmico da fachada

Para os edifícios dotados de uma envolvente em alvenaria, o coeficiente global de transmissão de calor (U) revela-se suficiente para entender o comportamento térmico destes. Contudo, o factor U não consegue representar o desempenho térmico e a contribuição das fachadas ventiladas para a eficiência energética global do edifício, dada a natureza extremamente dinâmica do comportamento destas fachadas, que de resto já foi mencionado antes.

Para o melhor entendimento do comportamento térmico das fachadas ventiladas, foram definidas duas eficiências de desempenho:

- Eficiência de Pré Aquecimento
- Eficiência de Isolamento Dinâmico

\(^*\) Por aproximação à área de passagem das grelhas, assumiu-se S a área de passagem no interior do canal
Em geral, para verificação das eficiências de Pré Aquecimento e de Isolamento Dinâmico, são utilizadas frequências acumuladas de ocorrência durante um período relativamente longo, (Paolo Corgnati, Marco e Serra 2007). Isto permite verificar para um determinado período, de que forma e com que frequência a fachada se comportou termicamente.

Neste caso, o período de aquisição de dados é diminuto assim como os caudais de ventilação não são controlados (situação de ventilação natural). Os resultados foram expressos unicamente como série temporal ou seja, é possível verificar o comportamento da fachada ao longo do(s) dia(s).

5.2.3.1 Eficiência de Pré Aquecimento

Representa a razão entre a entalpia do caudal de ventilação e a entalpia necessária ao aquecimento do ar de insuflação. Segundo (Paolo Corgnati, Marco e Serra 2007), a eficiência de Pré Aquecimento não é mais do que a capacidade que a fachada ventilada tem de pré aquecer o ar que circula pelo interior do canal durante as estações de aquecimento e meia estação, dado que o objectivo será recuperar o calor transportado pelo ar que circula no canal, para o interior do espaço ocupado, sendo definida como,

\[\eta = \frac{T_{ext} - T_{orig}}{T_{in} - T_0} \]

Fonte: (Paolo Corgnati, Marco e Serra 2007)

sendo,

- \(T_{ext}\) – Temperatura do ar de exaustão do canal
- \(T_{orig}\) – Temperatura do ar de origem
- \(T_0\) – Temperatura do ar exterior

Para que o conceito da eficiência de pré aquecimento faça sentido, \(T_{in} - T_0 > 0\)
Comportamento Térmico de Fachadas Ventiladas

Para $\eta < 0$, a temperatura do ar de exaustão do canal (T_{ext}) é menor que a temperatura do ar de origem (T_{orig}) e portanto, não existe recuperação de calor. Nesta situação, o único efeito positivo da fachada ventilada é o isolamento dinâmico térmico, conseguido pelo caudal de ar.

Se $0 < \eta < 1$, o ar de exaustão do canal é pré-aquecido a uma temperatura (T_{ext}) que é inferior à temperatura do ar de origem (T_{orig}) e o ar de exaustão do canal continua a necessitar de um aquecimento de apoio antes de entrar para o espaço interior.

Para $\eta > 1$, a fachada ventilada tem a capacidade de pré aquecer por completo o ar do interior do canal e teoricamente* cobre todas as perdas de calor do espaço interior, originadas pela ventilação.

5.2.3.2 Eficiência de Isolamento Dinâmico

Paolo Corgnati, Marco e Serra afirmam que a eficiência de Isolamento Dinâmico (ε), representa a percentagem de calor removido pelo ar de circulação no canal, relativamente ao total de calor que chega à fachada, parâmetro representativo das estações de arrefecimento e meia estação, vem,

$$\varepsilon = \frac{\dot{Q}_r}{\dot{Q}_{inc}} \quad 5.9$$

sendo,

$$\dot{Q}_r = m_v \cdot C_p \cdot (T_{ext} - T_i)$$

e

$$\dot{Q}_{inc} = [I \cdot \alpha_0 \cdot A + \dot{Q}_0] \quad 5.10$$

* A eficiência do recuperador de calor utilizado terá de ser considerada para que a afirmação possa ser verdadeira
com base na fig. 5.10, obtém-se,

\[
[I.\alpha_0. A + \dot{Q}_b] = (\dot{Q}_i + q_s. A) + \dot{m}_v. C_p. (T_{ext} - T_{in})
\]

5.11

\[
\dot{Q}_i = q_i. A
\]

5.12

Substituindo as expressões (5.10) e (5.12) na expressão (5.9), vem,

\[
\varepsilon = \frac{\dot{m}_v. C_p. (T_{ext} - T_{orig})}{q_i. A + q_s. A + \dot{m}_v. C_p. (T_{ext} - T_{in})}
\]

5.13

sendo,

\(\dot{m}_v\) – Caudal mássico de Ventilação Natural [kg/s]

\(C_p\) – Calor específico do ar a pressão constante [J/kg.ºK]

\(q_i\) - Fluxo de calor específico que atravessa o pano envidraçado interior, este valor pode ser negativo ou positivo, dependendo do sentido do fluxo de calor e é medido pelo fluxímetro [W/m²]

\(q_s\) - Fluxo de calor específico que chega ao interior com origem na radiação de comprimento de onda curto, obtido pelo piranómetro interior [W/m²]

\(A\) - Área do pano envidraçado [m²]

\(T_{ext}\) – Temperatura do ar de exaustão do canal [ºC]

\(T_{orig}\) – Temperatura do ar de origem à entrada do canal [ºC]
Comportamento Térmico de Fachadas Ventiladas

\(\varepsilon\) só faz sentido se não chegar a 1, se \(\varepsilon = 1\) isto porque \(q_l + q_s = 0\) ou seja, \(q_l = -q_s\) isto é possível, embora dependa da coincidência de tomarem o mesmo valor absoluto mas de sinal diferente. Das figuras em anexo fica claro que a convenção é \(q_l < 0\) quando o sentido do fluxo é do canal para a sala desta forma, \((T_{in} < T_{canal})\). Se \(\varepsilon < 0\) significa que a ventilação estaria a retirar mais calor do interior do canal do que aquele que é realmente fornecido pela radiação solar, o que é impossível¹. Por outro lado se \(\varepsilon = 0\), então o efeito de isolamento dinâmico promovido pela ventilação não está a ocorrer e todo o calor que chega à fachada é acumulado no interior do canal. Por último, se \(\varepsilon > 1\), significa \(q_l + q_s < 0\), sendo \(q_s > 0\) e o fluxo de calor \(q_f\), do interior para o canal.

5.2.4 Exemplo de Cálculo

- **Considerações Gerais**

- Os resultados apresentados são para um dia de cada configuração e variantes utilizadas (posição das lâminas e posição das persianas venezianas) durante o período de medição da célula de teste.

- A massa volúmica do ar assumida para o cálculo de \(\Delta P^E\) foi de 1,23 kg/m\(^3\) (à temperatura de 20ºC e à pressão atmosférica), ao passo que, a massa volúmica assumida para o cálculo do \(\Delta P^T\) foi de 1,1 kg/m\(^3\) (à temperatura de 40ºC a 45ºC e à pressão atmosférica).

- Para o cálculo de \(\Delta P^T\), \(\Delta T\) representa de acordo com a configuração,

 \[
 \begin{align*}
 \text{Fluxo Exterior} & \quad \Delta T = T_{ext} - T_0 \\
 \text{Fluxo de Exterior Cruzado} & \quad \Delta T = T_{ext} - T_0 \\
 \text{Fluxo Insuflação} & \quad \Delta T = T_{ext} - T_0 \\
 \text{Fluxo Interior} & \quad \Delta T = T_{ext} - T_{in} \\
 \text{Fluxo de Extracção} & \quad \Delta T = T_{ext} - T_{in}
 \end{align*}
 \]

¹ A não ser que o espaço interior esteja a fornecer calor ao canal
- Para o cálculo da velocidade linear do ar no interior do canal, foi assumido o valor absoluto resultante da soma das diferenças de pressão com origem térmica e eólica, para que a raiz tenha solução.

- Uma vez que a velocidade será sempre positiva, o caudal de ar vai obedecer à seguinte condição:

\[
\text{Se } \Delta P_T + \Delta P_E > 0 \implies G_g = G_g; \quad \Delta P_T + \Delta P_E < 0 \implies G_g = -G_g
\]

Para a condição em que \(\Delta P_T + \Delta P_E < 0 \implies G_g = -G_g \), dá-se inversão do sentido do escoamento ou seja, a grelha de admissão passa a funcionar como grelha de exaustão e a grelha de exaustão passa a funcionar como grelha de admissão de ar.

De acordo com a definição de eficiência de pré aquecimento, o índice do numerador acompanha o percurso seguido pelo ar ou seja,

 Fluxo Exterior
\[
\eta = \frac{T_{ext} - T_0}{T_{in} - T_0}
\]

 Fluxo Exterior Cruzado
\[
\eta = \frac{T_{ext} - T_0}{T_{in} - T_0}
\]

 Fluxo de Insuflação
\[
\eta = \frac{T_{ext} - T_0}{T_{in} - T_0}
\]

 Fluxo Interior
\[
\eta = \frac{T_{ext} - T_{in}}{T_{in} - T_0}
\]

 Fluxo de Extracção
\[
\eta = \frac{T_{ext} - T_{in}}{T_{in} - T_0}
\]

- Tendo em conta que a eficiência de pré aquecimento (\(\eta \)) só faz sentido quando o objectivo é aquecer o ar à saída do canal para que seja insuflado no interior da sala, as configurações relevantes para a verificação de (\(\eta \)) são o fluxo interior e o fluxo de insuflação.
- Foi assumido quando $\eta < 0$, o seu valor será 0 e quando $\eta > 100$, o seu valor será 100 tendo em conta as seguintes situações:

Quando $T_{in} - T_0 < 0 \Rightarrow \eta < 0$, esta situação não faz sentido porque neste caso não é necessário proceder ao pré aquecimento do ar (só faz sentido na estação de aquecimento e durante a noite).

Quando $T_{ext} - T_{in} < 0$ significaria que o ar de ventilação interior estaria a perder calor para o canal.

- Para o cálculo de ΔP^T, assumiu-se para a temperatura de saída a temperatura média no interior do canal dado que esse diferencial de pressões depende directamente da temperatura média no interior do canal e não somente das temperaturas do ar na admissão e na rejeição do ar.

- Para o cálculo das eficiências de pré aquecimento e de isolamento dinâmico, a temperatura assumida à saída do canal foi a média das temperaturas registadas pelos termopares localizados na saída do ar uma vez que, neste caso, é efectivamente a temperatura à saída que define as eficiências de pré aquecimento e de isolamento dinâmico.

Coeficientes de pressão do vento

Para obtenção dos coeficientes de pressão, tendo em conta a direcção do vento registado pelo dispositivo de aquisição de dados em cada instante, procedeu-se da seguinte forma,

<table>
<thead>
<tr>
<th>Orientação</th>
<th>Ângulo [º]</th>
<th>Orientação</th>
<th>Ângulo [º]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0 ou 360</td>
<td>S</td>
<td>180</td>
</tr>
<tr>
<td>NNE</td>
<td>22.5</td>
<td>SSO</td>
<td>202.5</td>
</tr>
<tr>
<td>NE</td>
<td>45</td>
<td>SO</td>
<td>225</td>
</tr>
<tr>
<td>ENE</td>
<td>67.5</td>
<td>OSO</td>
<td>247.5</td>
</tr>
<tr>
<td>E</td>
<td>90</td>
<td>O</td>
<td>270</td>
</tr>
<tr>
<td>ESE</td>
<td>112.5</td>
<td>ONO</td>
<td>292.5</td>
</tr>
<tr>
<td>SE</td>
<td>135</td>
<td>NO</td>
<td>315</td>
</tr>
<tr>
<td>SSE</td>
<td>157.5</td>
<td>NNO</td>
<td>337.5</td>
</tr>
</tbody>
</table>

Figura 5.11 – Rosa-dos-ventos
Comportamento Térmico de Fachadas Ventiladas

Tendo em conta que na tabela 5.3 os valores para o coeficiente de pressão do vento das grelhas utilizadas na célula de teste estão definidos de acordo com as seguintes orientações, N, NE, E, SE, S, SSO, OSO, O, ONO e NNO, foi efectuado um teste lógico que determina o valor mais aproximado do Cp num dado instante e para uma determinada direcção do vento, em que DIR define a direcção do vento nesse instante, vem,

Como exemplo, o cálculo será assumido para a grelha superior direita e vem,

Se 22,5 < DIR < 67,5 \(\Rightarrow \) \(Cp=0,35 \) (corresponde à orientação NE)
Se 67,5 < DIR < 112,5 \(\Rightarrow \) \(Cp=0,06 \) (corresponde à orientação E)
Se 112,5 < DIR < 157,5 \(\Rightarrow \) \(Cp=0,01 \) (corresponde à orientação SE)
Se 157,5 < DIR < 195 \(\Rightarrow \) \(Cp=0,03 \) (corresponde à orientação S)
Se 195 < DIR < 225 \(\Rightarrow \) \(Cp=0,01 \) (corresponde à orientação SSO)
Se 225 < DIR < 255 \(\Rightarrow \) \(Cp=0,11 \) (corresponde à orientação OSO)
Se 255 < DIR < 285 \(\Rightarrow \) \(Cp=0,08 \) (corresponde à orientação O)
Se 285 < DIR < 315 \(\Rightarrow \) \(Cp=0,01 \) (corresponde à orientação ONO)
Se 315 < DIR < 345 \(\Rightarrow \) \(Cp=0,01 \) (corresponde à orientação NNO)
Se nenhum dos anteriores então \(Cp=0,24 \) (corresponde à orientação N)

Tendo em conta que existem 4 grelhas superiores e 4 inferiores (direita e esquerda) e que somente 4 delas (2 superiores e 2 inferiores) estão abertas, assumiu-se para efeitos de cálculo a média dos resultados obtidos para as condições acima indicadas.

Exemplo de cálculo para uma qualquer configuração vem,

Velocidade linear do ar dentro do canal

Sabendo que,

\[
U = \frac{C_d}{\sqrt{\rho}} \left(\frac{2}{2} \times (|\Delta P_T + \Delta P_E|) \right) [m/s]
\]
Comportamento Térmico de Fachadas Ventiladas

vem,

\[
U = 0,4 \sqrt{2 \left(0,021 H_{12} \Delta T + \frac{1}{2} \rho_{20^\circ C} U_\infty^2 \Delta C_{p12} \right)}
\]

vem,

\[
U = 0,4 \sqrt{2 \left[(0,021 \times 2,5 \times 14,03) + \left(\frac{1}{2} \times 1,23 \times 2,20^2 \times 0,025 \right)\right]}
\]

\[
U = 0,486 \text{ m/s}
\]

Caudal Global de Ventilação Natural

O caudal global de VN, com origem térmica e eólica é dado por,

\[
G_g = A_{pass} \times 3600 \times U \ [m^3/h]
\]

sendo,

\[A_{pass} - \text{Área de passagem interior no canal [m}^2]\]

\[
G_g = 0,185 \times 3,5 \times 3600 \times 0,486
\]

\[
G_g = 1131,74 [m^3/h]
\]

Tendo em conta o que atrás foi assumido, como \(\Delta P^T + \Delta P^E > 0 \Rightarrow G_g = G_g\).

Eficiência de Pré Aquecimento

\[
\eta = \frac{T_{ext} - T_0}{T_{in} - T_0}
\]

\[
\eta = \frac{26,45 - 17,4}{19,90 - 17,4}
\]

\[
\eta = 3,62 \times 100
\]

\[
\eta = 362\%
\]
Eficiência de Isolamento Dinâmico

$$\varepsilon = \frac{m_v \cdot C_p \cdot (T_{ext} - T_0)}{\bar{q}_i \cdot A + \bar{q}_s \cdot A + m_v \cdot C_p \cdot (T_{ext} - T_0)}$$

$$\varepsilon = \left(\frac{1131,74}{3600}\right) \times 1009 \times (26,45 - 17,4)$$

$$\varepsilon = \frac{89,24 \times (2,05 \times 3,5) + 22,74 \times (2,05 \times 3,5) + 1131,74 \times 1009 \times (26,45 - 17,4)}{89,24 \times (2,05 \times 3,5) + 22,74 \times (2,05 \times 3,5) + 1131,74 \times 1009 \times (26,45 - 17,4)}$$

$$\varepsilon = 0,7813 \times 100$$

$$\varepsilon = 78,13\%$$
6 Resultados e Discussão

O desempenho térmico da fachada ventilada será analisado tendo em conta, para além da natural variabilidade das condições exteriores,

- A capacidade de pré aquecer o ar de insuflação durante a estação de aquecimento.
- A capacidade de remover parte dos ganhos solares durante a estação de arrefecimento.
- A capacidade de limitar os fluxos de calor através da fachada.

Os itens acima descritos serão analisados recorrendo à análise dos caudais globais de ventilação, eficiência de pré aquecimento e eficiência de isolamento dinâmico.

A eficiência de pré aquecimento e eficiência de isolamento dinâmico são analisadas recorrendo a uma escala de 0 a 100%, divididos em quatro intervalos iguais,

\[0 \leq x < 25\%\]
\[25\% \leq x < 50\%\]
\[50\% \leq x < 75\%\]
\[75\% \leq x \leq 100\%\]

Visto que os resultados em anexo são de extrema dificuldade para percepção do funcionamento de cada configuração, este modo de apresentação dos resultados vem ajudar a entender a frequência (em horas) e eficiência de cada configuração ao longo do dia.
6.1 Considerações Gerais

6.1.1 Condições Exteriores

A temperatura do ar exterior, radiação solar, velocidade e direcção do vento são, naturalmente, variáveis no tempo. Obviamente, é possível encontrar uma relação entre os elementos que definem o comportamento térmico da fachada e as condições exteriores mas comparar resultados de dois dias, tendo por base as condições exteriores já não o é. Os dados registados encontram-se em anexo e somente lhes será feita referência para entender situações de excepção aos resultados em discussão.

6.1.2 Temperatura Média do Ar no Canal

Depende directamente das condições exteriores e do caudal global de ventilação. Por outro lado, o nível a que se encontra o sombreamento e o ângulo das lâminas são também importantes. Devido ao comportamento extremamente dinâmico da fachada, com origem em vários factores, não é possível verificar em que medida o caudal é influenciado, em exclusivo pela posição do sombreamento e o ângulo das lâminas. Na configuração de fluxo exterior cruzado, para 2 dias em que as condições exteriores são muito idênticas (consultar figuras E1, E2, E3, E4 e E5), o caudal global de ventilação tende a diminuir com a abertura das lâminas do sombreamento. Significa que a área exposta das lâminas, perpendicular à direcção do escoamento do ar, dá origem a uma resistência acrescida ao escoamento. Consequentemente, a temperatura média do ar no canal aumenta quando as lâminas se encontram totalmente abertas ou seja, a 0º.

Figura 6.1 – Figura H1

Figura 6.2 – Figura H2
Comportamento Térmico de Fachadas Ventiladas

Da observação às duas figuras (6.1 e 6.2 respectivamente) é possível concluir que as lâminas a 45º tiveram em média um caudal de ventilação superior à situação em que as lâminas estão a 0º (completamente abertas).

![Figura 6.3 – Figura H3](image)

A figura 6.2 onde está representada a temperatura média do ar no canal, vem confirmar o que acima foi dito na medida em que as lâminas abertas apresentam uma temperatura média do ar no canal superior às lâminas a 45º durante as horas de sol. Os dias escolhidos foram os que apresentaram as melhores e mais próximas condições exteriores ao longo do período de recolha de dados, possibilitando a verificação da influência da posição das lâminas no caudal de ventilação.

6.1.3 Radiação de comprimento de onda curto e fluxo de calor que chega à sala

Tal como se observa em todas as figuras (B5, G4, H4, I3, P5, Q5, R3, Y4, Z5, AA3, AF3 e AI2) onde a radiação de comprimento de onda curto está representada, esta será mais elevada quando as lâminas do sistema de sombreamento estiverem completamente abertas, e mais baixa quando as lâminas estiverem totalmente fechadas e num valor entre o máximo e mínimo quando as lâminas estiverem semi-abertas (a 45º com a vertical).

O fluxo de calor que entra/sai da sala através do pano envidraçado interior é função do diferencial de temperaturas entre o ar do canal e o ar do interior da sala. Nas figuras (B6, G5, H5, I4, P6, Q6, R4, Y5, Z6, AA4, AF4 e AI3) verifica-se sistematicamente que durante as horas de maior radiação solar o sentido do fluxo de calor é do interior do canal para o interior da sala, correspondendo nesta situação a valores negativos e na situação inversa (da sala para o canal), a valores positivos. Durante as horas de maior radiação solar, é esperado um aumento da temperatura média do ar no canal,
Comportamento Térmico de Fachadas Ventiladas

dando origem ao sentido do fluxo do canal para a sala. Durante as horas nocturnas, o canal acaba por arrefecer o suficiente para que o fluxo de calor inverte o sentido e se dê do interior da sala para o interior do canal, significa que a temperatura do canal é menor que a temperatura da sala.

6.1.4 Temperatura Média do Sombreamento

Verifica-se que as temperaturas registadas nos 3 níveis, independentemente da configuração, apresentam valores muito próximos e portanto as diferenças de temperatura de um nível para outro são desprezáveis. Como seria de esperar, a temperatura do sombreamento ao nível mais baixo mostra-se ligeiramente inferior que a do nível mais elevado. Contudo, alguns casos, a temperatura ao nível 3 é ligeiramente inferior à temperatura ao nível 2. Isto pode ser devido à pressão exercida pelo vento, dando origem a refluxos de ar exterior mais frio pelas grelhas superiores.

Verifica-se uma exceção para a configuração de fluxo exterior cruzado (figura G6), onde a temperatura média do sombreamento ao nível 3 é muito constante ao longo de todo o dia, o que pode estar associado a um erro de medição do termopar.

Também foram registadas temperaturas muito próximas entre os 3 níveis para a configuração tampão. Há a salientar que nas horas de maior insolação, o nível 2 apresenta as temperaturas mais elevadas seguido do nível 1. A posição mais vertical do sol às 13h, faz incidir a radiação com mais intensidade aos níveis 2 e 1 encontrando-se o nível 3 mais sombreado. Visto não existir caudal no canal, não existe arrefecimento do sombreamento, assim, o aumento de temperatura está directamente relacionado com a radiação.

6.1.5 Caudal Global de Ventilação Natural

Para as horas nocturnas, o caudal de ventilação é sempre inferior ao caudal de ventilação em horas diurnas. O aumento e o decréscimo mais acentuados do caudal ao longo do dia verifica-se sempre ao nascer do sol e ao ocaso solar respectivamente. O máximo diário do caudal de ventilação é alcançado a meio do dia (entre as 12:00h e as 15:00h), sendo possível concluir que o aumento do caudal de ventilação está directamente relacionado com o aumento da radiação solar. O mínimo diário do caudal de ventilação ocorre geralmente em horas nocturnas. A existência de caudal a estas horas e tendo em conta que não existe diferencial de temperaturas entre o interior e o exterior, deve-se à existência de vento. O caudal global de ventilação é directamente influenciado por dois factores
externos, a radiação solar (componente térmica) e o vento (componente eólica). A soma das diferenças de pressões de origem térmica e eólica, dá origem ao caudal global de ventilação natural. O ângulo da posição das lâminas influencia o caudal global de ventilação, mostrando tendência para diminuir quando se encontram totalmente abertas (a 0º).

Verifica-se sistematicamente que $G_g@0^\circ < G_g@45^\circ < G_g@90^\circ$.
6.2 Frequência de Ocorrência de Eficiência de Pré Aquecimento

Os resultados que se encontram em anexo serão úteis para mostrar em que período do dia a configuração esteve a funcionar no intervalo desejado. Tendo em conta que os dados foram recolhidos de 10 em 10 minutos ao longo do dia, temos um total de 144 registos diários. Este valor é multiplicado 10 e dividido por 60, perfazendo as 24h de um dia. Os valores constantes nas tabelas anexas aos gráficos representam o tempo em horas.

Para complementar a leitura dos gráficos Frequência de Ocorrência, será necessário analisar as figuras anexas correspondentes à configuração em estudo. As figuras em anexo evidenciam claramente os períodos do dia em que determinada configuração funcionou de uma forma estável ou com oscilações entre máximos e mínimos.

Fluxo Exterior

![Fluxo Exterior](image_url)

Figura 6.4 – Frequência de Ocorrência de Pré Aquecimento Fluxo Exterior

Apesar de não ser relevante para a configuração em estudo, foi feita a verificação do efeito de pré aquecimento do ar (o ar é rejeitado para o exterior). Procedeu-se a esta análise para que se tenha uma noção do desempenho deste tipo de configuração comparativamente com aquelas em que o pré aquecimento do ar é vantajoso (fluxo interior e fluxo de insuflação).
Comportamento Térmico de Fachadas Ventiladas

O intervalo em que se observa mais tempo acumulado é o correspondente a 0%-25%, sendo a posição do sombreamento B45 a que mais tempo esteve a funcionar nesta gama (cerca de 17h:40mins), seguido de B0 (aproximadamente 9h:40mins) e por último B90 (somente com 20mins).

No intervalo 75%-100%, a posição com mais tempo de funcionamento foi B90 (11h), seguido de B0 (aproximadamente 10h:40mins) e por último B45 (5h).

Da figura C1, ao nascer do dia (8h), dá-se um aumento brusco das três posições para valores máximos, tendo B45 descido bruscamente até 0% às 11h. B0 e B45 desceram bruscamente ao fim do dia por volta das 18h.

Por observação da figura C1, foram registados valores sempre abaixo de 50% no período das 19h:30mins às 8h para as três posições.

Alguns picos/vales que ocorram durante o dia são perceptíveis na figura C1 mas que em nada influenciam os desempenhos por serem de curta duração.

Em resumo, para o intervalo de maior eficiência é B90 a posição que esteve mais tempo em funcionamento (11h).

Fluxo Exterior Cruzado

<table>
<thead>
<tr>
<th>Tempo Acumulado [h]</th>
<th>0%-25%</th>
<th>25%-50%</th>
<th>50%-75%</th>
<th>75%-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>η B0 13/05</td>
<td>0,00</td>
<td>0,00</td>
<td>9,83</td>
<td>14,17</td>
</tr>
<tr>
<td>η B90 10/05</td>
<td>7,50</td>
<td>4,33</td>
<td>3,00</td>
<td>9,17</td>
</tr>
<tr>
<td>η M0 20/06</td>
<td>16,33</td>
<td>0,83</td>
<td>0,83</td>
<td>6,00</td>
</tr>
<tr>
<td>η M45 24/06</td>
<td>8,00</td>
<td>3,67</td>
<td>2,00</td>
<td>10,33</td>
</tr>
<tr>
<td>η T 07/07</td>
<td>6,50</td>
<td>5,50</td>
<td>1,67</td>
<td>10,33</td>
</tr>
</tbody>
</table>

Figura 6.5 – Frequência de Ocorrência de Pré Aquecimento Fluxo Exterior Cruzado
Comportamento Térmico de Fachadas Ventiladas

Tal como para a configuração em fluxo exterior, a capacidade de pré aquecer o ar para este caso não é relevante, contudo foi observado o seguinte:

O intervalo que registra mais tempo acumulado é de 75%-100%.

No intervalo 75%-100%, a posição com mais tempo de funcionamento foi B0 (14h:10mins), depois aparece M45 e T com o mesmo tempo de funcionamento (cerca de 10h:20mins), seguidos de B0 (aproximadamente 14h:10mins), B90 (9h:10mins) e por último M0 (6h).

Da figura J1, ao nascer do dia (8h), dá-se um aumento brusco de B0 e B90 para valores máximos, descendo bruscamente ao fim do dia por volta das 18h. De notar que às 8h a reposta de B90 é retardada a B0, ao final do dia, a descida de B90 dá-se mais cedo que B0.

Por observação da figura K1, M0 e M45 reagem ao nascer do sol da mesma forma que B0 e B90, iniciando a subida até valores acima de 75% por volta das 8h. Na descida, M0 cai bruscamente até 0% por volta das 11h, oscilando durante aproximadamente uma hora para depois retomar 0% até às 18h, onde se verifica um pico que dura mais uma hora e volta a retomar valores abaixo de 50% no período das 19h:30mins até às 8h. M45 segue a tendência que se tem verificado de descer bruscamente a partir das 18h, tomando valores abaixo de 50% das 19:30mins às 8h.

Da figura L1, o súbito aumento para valores acima de 75% por volta das 8h e a rápida descida abaixo de 50% a partir das 18h caracteriza o comportamento de T.

Das figuras J1 e L1, o comportamento é bastante estável, B0, B45 e T tomam valores máximos nas horas diurnas das 8h às 18h e valores abaixo de 50% nas restantes horas noturnas.

Da figura K1, os períodos em que se verificou o tempo de funcionamento para valores máximos foi durante o mesmo período verificado nas figuras J1 e L1.

O tempo de funcionamento registado nos restantes intervalos de desempenho, são justificados por situações de oscilação de valores. Também durante as horas noturnas, todas as posições do sombreamento assumem valores abaixo de 50% e que se comportam de uma forma bastante estável, à excepção de B0 que se encontra em horas noturnas e de uma forma estável entre 50% e 75%.

Em resumo e após terem sido consideradas as figuras J1, K1 e L1, para o intervalo de maior eficiência é B0 (14h:10mins) que apresenta o melhor desempenho.
Comportamento Térmico de Fachadas Ventiladas

Fluxo de Insuflação

Para esta configuração em particular, a capacidade de pré aquecimento do ar mostra-se importante na medida em que esse ar será aproveitado para fins de aquecimento do espaço interior.

Como é possível observar, o intervalo 75%-100% apresenta mais tempo acumulado, tendo sido B45 o que mais tempo esteve a funcionar (12h:10mins) seguido de M0 (11h:10mins), B0 (10h:50mins), T (10h:40mins), B90 (10h:30mins), M45 (6h:10mins) e por último M90 (3h:30mins).

Da figura S1, ao nascer do dia (8h), dá-se um aumento brusco de B0 e B90 para valores máximos, B0 desce bruscamente ao fim do dia por volta das 18h. De notar ainda que B90 apresenta oscilações que ocorrem entre as 15h e as 18h, retomando valores máximos após este período, para voltar a descer a par com B0 a partir das19h. Às 8h a reposta de B45 é retardada relativamente a B0 e a B90, ao final do dia, a descida de B45 dá-se em simultâneo com B0 e B90. Em horas nocturnas B0 e B90 apresentam valores abaixo de 50% com um comportamento bastante estável, para o mesmo período, B45 varia entre valores máximo e mínimos, tendo ainda alguns períodos de estabilidade mais muito curtos.

Observa-se na figura T1 a mesma tendência de subida e descida bruscas ao nascer do dia e ao final do dia respectivamente. M0 e M45 apresentam os valores máximos durante as horas diurnas das 8h.
às 18h, com exceção para duas oscilações de M0 das 15h:30mins às 16h:30mins, não apresentando de resto qualquer relevância no seu desempenho. Em horas nocturnas das 18h:30mins às 7h, M0 e M45 tomam valores abaixo de 50%. M90 apresenta a mesma tendência ao nascer do dia e ao final do dia comparativamente com M0 e M45 mas apresenta muitas oscilações ao longo do dia. O intervalo de estabilidade para M90 ocorre das 12h às 19h, onde toma o valor 0%. Nas restantes horas o seu comportamento é muito instável.

Da figura U1, verifica-se o comportamento característico, tomando os valores máximos entre as 9h e as 18h e nas horas nocturnas, assume valores abaixo de 50%.

Em resumo e após terem sido consideradas as figuras S1, T1 e U1, B45 assume o melhor desempenho (12h:10mins).

Fluxo de Extracção

<table>
<thead>
<tr>
<th>Tempo Acumulado [h]</th>
<th>Frequência de Ocorrência de Pré Aquecimento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%-25%</td>
</tr>
<tr>
<td>η B0 17/06</td>
<td>22,33</td>
</tr>
<tr>
<td>η B90 13/06</td>
<td>22,83</td>
</tr>
<tr>
<td>η M0 05/06</td>
<td>11,67</td>
</tr>
<tr>
<td>η M45 03/06</td>
<td>13,83</td>
</tr>
<tr>
<td>η M90 07/06</td>
<td>21,50</td>
</tr>
<tr>
<td>η T 10/06</td>
<td>17,50</td>
</tr>
</tbody>
</table>

Figura 6.7 – Frequência de Ocorrência de Pré Aquecimento Fluxo de Extracção

Mais uma vez, não fazendo sentido verificar a eficiência de pré aquecimento para configurações em que o ar não será aproveitado para fins de aquecimento ambiente, será verificado o seu desempenho de pré aquecimento do ar.

Ao contrário da tendência até aqui, o tempo de funcionamento acumulado é superior para 0%-25%.
Comportamento Térmico de Fachadas Ventiladas

Por ordem decrescente de tempo de funcionamento no intervalo 0%-25% vem B90 (22h:50mins), B0 (22h:20mins), M90 (21h:30mins), T (17h:30mins), M45 (13h:50mins) e por último M0 (11h:40mins).

Os intervalos 25%-50% e 50%-75%, não mostram relevância, tendo em conta os tempos de funcionamento registados.

Da figura AB1, B0 e B90, apresentam 0% de eficiência ao longo de praticamente todo o dia. Nas horas diurnas foram registados somente dois picos para ambas as posições, um por volta das 8h:30mins, caído a 0% logo de seguida e outro por volta das 18h, caído a 0% também muito rapidamente.

Da leitura da figura AC1, M0, M45 e M90 apresentam muitas transições ao nascer do sol (a partir das 8h, até às 9h:30mins) e depois ao fim do dia (das 17h às 21h). De uma forma geral M0, M45 e M90 comportaram-se de forma semelhante, tendo assumido valores máximos e mantido a estabilidade durante as horas diurnas (das 9h às 17h) e 0% em horas nocturnas (das 00h às 8h), com exceção para M0 que registou um pico por volta das 0h mas que rapidamente retomou o valor anterior. Ao fim do dia verificou-se uma grande instabilidade para as três posições, tendo oscilado entre valores máximos e mínimos, não sendo possível verificar qualquer tipo de estabilidade durante as horas nocturnas que se seguem logo após o final do dia até às 0h.

Da figura AD1, T durante as horas nocturnas apresentou sempre 0% de eficiência, tendo acompanhado a tendência já verificada de subir rapidamente até valores máximos a partir das 8h. Observam-se algumas oscilações ao longo do dia e um pico não relevante por volta das 17h que rapidamente retomou o valor anterior.

Em resumo e para cada posição do sombreamento, considerando o intervalo 75%-100%, o funcionamento estável de M45 foi no período das 9h às 18h; M0 das 10h até às 15h; B0, B90, M90 e T nunca apresentaram um comportamento estável. Posto isto M45 foi a posição que esteve mais tempo a funcionar na melhor eficiência.
Fluxo Interior

![Graph](image)

Figura 6.8 – Frequência de Ocorrência de Pré Aquecimento Fluxo Interior

A configuração em causa utilizará o ar que circula no interior do canal para aquecimento ambiente. M45 mantém-se a maior parte do tempo a funcionar no intervalo 0%-25%, traduzindo-se numa reduzida capacidade de pré aquecimento do ar, quando comparado com a configuração de fluxo de insuflação. Analisando a figura AG1 é possível verificar um período de estabilidade entre as 18h:30mins e as 8h. Em horas diurnas, a evolução da curva tem uma tendência ascendente, marcada por muitas transições de valores máximos a mínimos. Por volta das 15h verifica-se uma tendência descendente da curva, retomando valores mais estáveis a partir das 18h.

Em resumo a eficiência de pré aquecimento foi melhor entre as 9h e as 15h.

Tampão

Para a configuração de tampão, a inexistência de caudal impossibilita a determinação da eficiência de pré aquecimento. Para este caso em particular, somente a contabilização dos ganhos solares pode caracterizar o seu desempenho térmico.
6.3 Eficiência de Isolamento Dinâmico

Fluxo Exterior

Da figura, todas as posições de sombreamento estiveram a funcionar durante mais tempo no intervalo 75%-100%.

Por ordem decrescente de tempo de funcionamento no intervalo 75%-100% vem, B90 (13h:40mins), B0 (11h:20mins) e por último B45 (10h:20mins).

Da figura C2, ao nascer do dia (8h), dá-se um aumento brusco das três posições para valores máximos, voltando a descer bruscamente a meio da tarde por volta das 16h.

Ao fim do dia e já para horas nocturnas, por observação da figura C2 ocorrem muitas oscilações para as três posições, alcançando mais estabilidade a partir das 00h até às 8h, hora a partir da qual as três posições tomam o valor máximo.

No intervalo 0%-25%, B90 nunca funcionou, tendo sido registado 9h:10mins para B45 e 3h para B0.

No geral, da figura C2 existe estabilidade para as três posições durante as horas diurnas (das 8h às 17h).
Comportamento Térmico de Fachadas Ventiladas

Em resumo, a posição B90 registou o maior tempo de funcionamento acima de 75% (13h:40mins) e de forma estável.

Fluxo Exterior Cruzado

![Gráfico de frequência de ocorrência de isolamento dinâmico](https://via.placeholder.com/150)

<table>
<thead>
<tr>
<th>Tempo Acumulado [h]</th>
<th>0%-25%</th>
<th>25%-50%</th>
<th>50%-75%</th>
<th>75%-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε B0 13/05</td>
<td>0,33</td>
<td>5,17</td>
<td>8,83</td>
<td>9,67</td>
</tr>
<tr>
<td>ε B90 10/05</td>
<td>4,67</td>
<td>5,83</td>
<td>3,83</td>
<td>9,67</td>
</tr>
<tr>
<td>ε M0 20/06</td>
<td>8,50</td>
<td>3,17</td>
<td>1,83</td>
<td>10,50</td>
</tr>
<tr>
<td>ε M45 24/06</td>
<td>2,00</td>
<td>6,17</td>
<td>3,83</td>
<td>12,00</td>
</tr>
<tr>
<td>ε T 07/07</td>
<td>2,00</td>
<td>6,83</td>
<td>4,00</td>
<td>11,17</td>
</tr>
</tbody>
</table>

Figura 6.10 – Frequência de Ocorrência de Isolamento Dinâmico Fluxo Exterior Cruzado

Mais uma vez, o tempo de funcionamento de todas as posições foi superior para o intervalo 75%-100%.

Por ordem decrescente de tempo de funcionamento no intervalo 75%-100% vem, M45 (12h), seguido de T (11h:10mins), M0 (10h:30mins) e por último com o mesmo valor, B0 e B90 (9h:40mins).

Da análise às figuras J2, K2 e L2, o aumento brusco da eficiência ao nascer do sol e a diminuição brusca ao fim do dia, traduzem a mesma tendência já verificada.

Por análise da figura J2, B0 e B90 tomam valores máximos durante as horas diurnas das 8h até às 18h. Nas horas diurnas, B0 apresentou algumas oscilações ao longo do dia, tendo sido o comportamento de B90 mais estável, com excepção de um vale por volta das 9h:30mins mas que por ter sido muito breve pode ser desprezado. Em horas nocturnas, das 18h:30mins às 7h, B0 e B90 apresentaram valores no intervalo 50%-75% bastante estáveis.
Comportamento Térmico de Fachadas Ventiladas

Da figura K2, verifica-se a mesma tendência que para a figura J2, ao nascer do dia, a resposta de M0 foi mais lenta comparativamente com M45, quando estes dispararam para valores máximos a partir das 8h. A descida foi iniciada mais cedo por M45 por volta das 15h, tendo M0 começado a descer somente a partir das 18h. Não se verificaram alterações do comportamento ao longo de todo o dia. M0 e M45 assumiram valores abaixo de 50% no período nocturno das 19h:30mins às 7h.

A figura L2 apresenta um comportamento típico e não existe qualquer oscilação inesperada ao longo de todo o dia, tendo tomado valores abaixo de 50% no período nocturno.

Resumidamente, M45 apresenta o melhor desempenho (12h), e uma estabilidade bastante boa ao longo de todo o dia.

Fluxo de Insuflação

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Freqüência de ocorrência de Isolamento Dinâmico</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% - 25%</td>
<td>B0 28/07: 0,00 0,00 5,83 18,17</td>
</tr>
<tr>
<td>25% - 50%</td>
<td>B45 04/08: 2,50 0,33 1,00 20,17</td>
</tr>
<tr>
<td>50% - 75%</td>
<td>B90 15/08: 0,00 0,00 8,33 15,67</td>
</tr>
<tr>
<td>75% - 100%</td>
<td>M0 22/07: 0,00 0,83 8,50 14,67</td>
</tr>
<tr>
<td></td>
<td>M45 18/07: 1,33 3,00 3,33 16,33</td>
</tr>
<tr>
<td></td>
<td>M90 15/07: 4,83 2,33 5,33 11,50</td>
</tr>
<tr>
<td></td>
<td>T 13/07: 0,00 0,00 6,00 18,00</td>
</tr>
</tbody>
</table>

Figura 6.11 – Freqüência de Ocorrência de Isolamento Dinâmico Fluxo de Insuflação

Da figura é possível verificar que o tempo de funcionamento para todas as posições do sombreamento é maior no intervalo 75%-100%.

Por ordem decrescente de tempo de funcionamento no intervalo 75%-100% vem, B45 (20h:10mins), seguido de B0 (18h:10mins), T (18h), M45 (16h:20mins), B90 (15h:40mins), M0 (14h:40mins) e por último M90 (11h:30mins).
Da análise às figuras S2, T2 e U2, o aumento brusco da eficiência ao nascer do sol e a diminuição brusca ao fim do dia, traduzem a tendência esperada.

Da análise à figura S2, B0 e B90 apresentam um comportamento muito idêntico, tomando valores máximos durante o período diurno das 8h às 18h e tomam valores acima de 50 para as restantes horas noturnas. B45, apresenta alguma instabilidade de funcionamento durante as horas noturnas das 18h às 8h. Para o período noturno, as sucessivas oscilações não permitem uma estabilidade dentro de nenhuma gama de valores, mostrando contudo, tendência para assumir valores máximos mesmo em horas noturnas. Em horas diurnas, B45 mantém-se a funcionar sempre nos valores máximos.

Da figura T2, para além de todas as posições terem estado a funcionar nos valores máximos durante as horas diurnas, existe um período ao final do dia das 18h às 0h onde é possível verificar inúmeras oscilações para todas as posições. Somente a partir das 0h parece existir alguma estabilidade, exceção feita para M90 que praticamente durante todo o período noturno esteve constantemente a oscilar. M0 e M45 a partir das 0h assumiram sempre valores acima de 50%.

A figura U2 mantém um comportamento muito regular ao longo de todo o dia, que de resto já é expectável para a posição T tendo em conta o que já foi verificado para outras configurações.

Em resumo, B45 apresenta o melhor desempenho, tendo permanecido acima de 75% durante 20h:10mins.
Fluxo de Extracção

É no intervalo 75%-100% que todas as posições estiveram a funcionar durante mais tempo. Por comparação, o tempo de funcionamento para cada posição mostra-se muito aproximado.

Por ordem decrescente de tempo de funcionamento no intervalo 75%-100% vem, B90 (20h:40mins), T (20h:20mins), M0 (19h:50mins), B0 (19h:40mins), M90 (19h:30mins) e por último M45 (19h:10mins).

Á exceção do que até aqui tem sido verificado, por análise às figuras AB2, AC2 e AD2, os valores noturnos não apresentam valores mais baixos do que durante as horas diurnas. O nascer do dia (8h) reflete-se em todas as posições das figuras observadas na medida em que se dá uma descida brusca de valores máximos até valores mínimos, retomando uma hora depois em todos os casos a valores máximos onde se mantêm até às 18h, excepção feita para B0, M0 e M45 que começam a descer por volta das 15h.

Da figura AB2, existe um período de instabilidade a partir das 18h para B0 e B90 e que se estende até às 21h, estabilizando a partir daí. Às 0h, B0 apresenta uma oscilação de valores máximos até valores mínimos mas que não se mostra relevante na medida em que retomou de imediato os valores máximos.
Comportamento Térmico de Fachadas Ventiladas

Da figura AC2, verifica-se também um período de instabilidade ao final do dia e que dura das 18h às 23h:30mins. A partir das 0h M0 e M45 apresentam uma boa estabilidade, tendo M0 descido de valores máximos até valores mínimos por volta das 0h mas por breves instantes, não representando qualquer impacto relevante no seu desempenho, por outro lado, M90 das 0h às 8h oscilou bastante, tendo contudo apresentado uma tendência em se manter em valores máximos.

Da figura AD2, verifica-se que T apresentou muitas transições tendo contudo, mantido a tendência para valores máximos ao longo de todo o dia.

Em resumo, B90 apresenta o melhor desempenho, 20h:40mins

Fluxo Interior

![Fluxo Interior](image)

Figura 6.13 – Frequência de Ocorrência de Isolamento Dinâmico Fluxo Interior

Mais uma vez e como tem vindo a ser constatado, a configuração esteve a funcionar durante mais tempo (17h) no intervalo 75%-100%, logo de seguida aparece o intervalo 0%-25% com 5h:40mins. Por observação da figura AG2, o tempo de funcionamento nos restantes dois intervalos não é relevante uma vez que o tempo registado diz respeito a transições.

Pela figura AG2 e de uma forma geral, o comportamento ao longo do dia não é estável excepto raros e curtos períodos, contudo, entre as 9h e as 18h é possível verificar um bom desempenho, tendo algumas transições ao longo do mesmo que se mostram pouco relevantes.
Comportamento Térmico de Fachadas Ventiladas

Tampão

À semelhança do que acontece para a eficiência de pré aquecimento, não existe caudal de ventilação para a configuração de tampão, impossibilitando assim a determinação da eficiência de isolamento dinâmico. Para este caso em particular, a contabilização dos ganhos solares podem caracterizar o seu desempenho térmico.

Do que acima foi mencionado e por comparação com fluxo exterior cruzado,

Para a configuração tampão tem-se,

Figura 6.14 – Figura AH2

Figura 6.15 – Figura AI3

Para a configuração fluxo exterior cruzado tem-se,

Figura 6.16 – Figura E2

Figura 6.17 – Figura H5
Da figura 6.14, por volta das 10h ocorreu um pico que toma o valor aproximado de 450W/m2 e só toma valores acima deste a partir das 12h:30mins. Neste intervalo de tempo, por observação da figura 6.15, verifica-se que o sentido do fluxo se dá do canal para a sala e assume o valor aproximado de 190W/m2

Da figura 6.16, às 12h, ocorreu o máximo de radiação de aproximadamente 450 W/m2 para M45. Analisando à mesma hora a figura 6.17, verifica-se que o fluxo de calor se dá do canal para o interior da sala e toma o valor aproximado de 90W/m2 para M45.

Apesar de a radiação ser aproximadamente a mesma nos dois casos, verifica-se que a configuração tampão permitiu que muito mais calor fosse transferido para a sala (190W/m2) comparativamente com a configuração fluxo exterior cruzado.
6.4 Resultados Cortina Têxtil

O desempenho térmico entre os dois tipos de sombreamento só é possível recorrendo à comparação das suas eficiências de isolamento dinâmico. Os gráficos denominados de Frequência de Ocorrência vêm demonstrar o tempo que cada um dos dispositivos de sombreamento funcionou na melhor ou na pior eficiência de isolamento dinâmico, comparando claro está, para a mesma configuração, o mesmo tipo de posição do sombreamento.

Fluxo Exterior

Figura 6.18 – Frequência de Ocorrência de Isolamento Dinâmico Fluxo Exterior cortina têxtil

Da figura, todas as posições de sombreamento estiveram a funcionar durante mais tempo no intervalo 75%-100%, à excepção de T que funcionou durante mais tempo no intervalo 0%-25%.

Por ordem decrescente de tempo de funcionamento no intervalo 75%-100% vem, B (21h:50mins), M (15h:10mins) e por último T (3h:50mins).

Do gráfico TXT 1, verifica-se que B, M e T apresentam tendencialmente valores elevados tanto para horas noturnas como para horas diurnas. À excepção de T que ao final do dia a partir das 18h:30mins e até às 0h assume 0%. Contudo é possível identificar ao nascer do dia (8h) e ao fim do dia (18h) a transição que também marcou o sistema de sombreamento por persianas venezianas.

B das 0h às 8h assumiu valores máximos. Já para M e T, estes oscilaram de valores máximos a valores mínimos, tendo-se registado para M uma tendência em permanecer em valores máximos e para T tendência para permanecer em valores mínimos. A transição às 8h da manhã é caracterizada
Comportamento Térmico de Fachadas Ventiladas

por uma descida brusca dos valores das três posições até um limite mínimo para cada uma delas, aumentando gradualmente ao longo do dia. A partir das 18h B e M alcançam novamente os valores máximos e T a partir do mesmo momento apresenta algumas oscilações e acaba por alcançar rapidamente 0%.

Em resumo, B apresenta o melhor desempenho com 21h:50mins acima de 75%.

Fluxo Exterior Cruzado

Da figura, ambas as posições de sombreamento estiveram a funcionar durante mais tempo no intervalo 75%-100%, tendo sido M (17h:40mins) a posição do sombreamento que funcionou durante mais tempo acima de 75%, seguida de T (14h:30mins).

Da figura TXT 2, verifica-se que M e T apresentam tendencialmente valores elevados tanto para horas noturnas como para horas diurnas. Das 0h às 8h M apresenta valores máximos com maior frequência, oscilando várias vezes do máximo ao mínimo, acabando por tomar o valor 0% uma hora antes da transição ou seja, às 8h. Quanto a T, para o mesmo período, tende a assumir o valor 0% de forma mais estável das 4h às 9h, altura a partir da qual inicia a tendência ascendente. Tal como para fluxo exterior, M e T descrevem uma evolução ascendente ao longo do dia, atingindo o máximo ao final do dia às 18h, iniciando-se períodos de oscilação mas em que a tendência é para valores máximos.

Em resumo, M apresenta o melhor desempenho com 17h:40mins acima de 75%.
Comportamento Térmico de Fachadas Ventiladas

Fluxo de Insuflação

![Gráfico de frequência de ocorrência de isolamento dinâmico para o fluxo de insuflação](image)

Figura 6.20 – Frequência de Ocorrência de Isolamento Dinâmico Fluxo de Insuflação cortina têxtil

Da figura, T esteve a funcionar durante mais tempo no intervalo 0%-25% durante 14h:40mins.

Da figura TXT 3, verifica-se que T apresenta tendencialmente valores mais baixos durante as horas noturnas das 0h às 9h. Ao final do dia a partir das 17h, apresenta inúmeras oscilações entre valores máximos e mínimos, não sendo possível perceber qual a tendência. Somente a partir das 21h é que assume valores bem próximos de 0% e se mantém assim até às 9h.

Durante as horas diurnas, T inicia a subida de 0% a partir das 9h até ao máximo que se situa por volta das 17h.

Em resumo, T apresenta um tempo de funcionamento acima de 75% de 14h:40mins.

Fluxo de Extracção

![Gráfico de frequência de ocorrência de isolamento dinâmico para o fluxo de extracção](image)

Figura 6.21 – Frequência de Ocorrência de Isolamento Dinâmico Fluxo de Extracção cortina têxtil
Da figura, todas as posições de sombreamento estiveram a funcionar durante mais tempo no intervalo 75%-100%.

Por ordem decrescente de tempo de funcionamento no intervalo 75%-100% vem, M (18h:30mins), T (16h:40mins) e por último B (12h:30mins).

Da figura TXT 4, verifica-se que M e T apresentam tendencialmente valores elevados tanto para horas noturnas como para horas diurnas. Ao final do dia a partir das 18h e até às 8h, é possível verificar inúmeras oscilações para B, não descrevendo períodos estáveis à excepção do período das 21h às 0h que assumiu o valor 0%. M, durante o período noturno das 18h às 8h apresentou valores muito estáveis e na grande maioria valores de 100%, excepção feita durante o período das 18h às 21h em que assumiu o valor 0%. T, segue exactamente a mesma tendência que M embora este tenha assumido o valor de 0% a partir das 18h até às 0h.

Durante as horas diurnas, das 9h até às 18h, verifica-se o aumento gradual das eficiências das três posições, atingindo o valor máximo por volta das 18h.

Em resumo, M apresenta o melhor desempenho com 18h:30mins acima de 75%.
7 Conclusões e Perspectivas Futuras

As várias configurações abordadas e a grande variação das condições exteriores ao longo do período de recolha de dados obrigam a conclusões fortemente baseadas nas eficiências de pré aquecimento do ar e de isolamento dinâmico.

Concluir qual das configurações foi mais eficiente a pré aquecer o ar de ventilação ou a isolar dinamicamente o canal é essencial para uma escolha mais acertada em fase de projecto.

A radiação solar desempenha um papel muito importante no comportamento térmico da fachada, independentemente da configuração adoptada.

O caudal global de ventilação natural assume um papel muito importante no desempenho térmico da fachada removendo o calor proveniente da radiação solar e funcionando como um parâmetro de controlo automático da temperatura média do ar no canal, prevenindo o seu aumento.

Das figuras do caudal de ventilação vs diferença de temperatura entre o interior e o exterior, a relação entre ambos é directamente proporcional.

Para além da radiação, em ventilação natural, o vento desempenha um papel fundamental. Das figuras da velocidade e direcção do vento, tendo em conta a orientação da célula de teste (160º), quando a incidência do vento assume esta direcção ou se afasta dela, os caudais de ventilação sofrem alterações significativas. Também em horas nocturnas, quando já não existe variação de pressões por efeito térmico, o caudal de ventilação continua a existir, devendo-se à influência que o vento exerce, originando uma diferença de pressões entre as grelhas inferiores e superiores.

Conclui-se que é muito importante a escolha cuidada do tipo de sombreamento a utilizar tendo em conta as temperaturas registadas da superfície dos sombreamentos (acima de 45ºC), podem ocorrer fenómenos de transferência de calor por radiação para o pano envidraçado interior, prejudicando o conforto térmico nas proximidades do mesmo.

Conclusões para a Eficiência de Pré Aquecimento

Da discussão e análise às figuras da eficiência de pré aquecimento, foi possível verificar qual a posição do sombreamento que melhore resultados (acima de 75%) obteve, tendo-se chegado às seguintes conclusões:
Comportamento Térmico de Fachadas Ventiladas

Fluxo Exterior - B90 (11h)
Fluxo Exterior Cruzado - B0 (14h:10mins)
Fluxo de Insuflação - B45 (12h:10mins)
Fluxo de Extracção - M45 (9h:10mins)
Fluxo Interior – M45 (4h)

Sem ter em conta a configuração nem o grau de sombreamento interior, a configuração Fluxo de Ar Exterior Cruzado foi aquela que mais tempo esteve a funcionar acima de 75% de eficiência de pré aquecimento e de forma estável (embora para esta configuração este indicador não seja importante). Os resultados obtidos para Fluxo de Insuflação (12h:10mins) e Fluxo Interior (4h), o desempenho do primeiro é superior devido ao sobreaquecimento do ar interior da sala durante as horas de forte radiação solar em que a temperatura do ar interior passa a ser superior à temperatura do ar exterior. Como a eficiência de pré aquecimento aumenta quando a temperatura do ar à entrada do canal diminui e tendo em conta que $T_{in_{FI}} > T_{in_{Fins}}$, o Fluxo de Insuflação apresenta o melhor desempenho quando comparado com Fluxo Interior.

Conclusões para a Eficiência de Isolamento Dinâmico

Fluxo Exterior - B90 (13h:40mins)
Fluxo Exterior Cruzado - M45 (12h)
Fluxo de Insuflação - B45 (20h:10mins)
Fluxo de Extracção – B90 (20h:40mins)
Fluxo Interior – M45 (17h)

Sem ter em conta a configuração nem o grau de sombreamento do interior, a configuração Fluxo de Extracção foi aquela que mais tempo esteve a funcionar acima de 75% de eficiência de isolamento dinâmico e de forma estável.

A observação das figuras representando a evolução do caudal global de ventilação natural, mostra uma tendência de redução do seu valor quando as lâminas tomam a posição aberta, devido ao
Comportamento Térmico de Fachadas Ventiladas

aumento da área exposta da lâmina, perpendicular ao fluxo de ar e que resulta num aumento da perda de carga.

Como foi possível verificar repetidamente na grande maioria dos casos e para ambos os indicadores as alterações de comportamento mais acentuadas ocorreram ao nascer do dia e ao ocaso solar, fruto da rápida variação da temperatura do canal, função da radiação solar. Esta desempenha, portanto um papel muito importante para o desempenho das fachadas ventiladas em ventilação natural, na medida em que o seu aumento representa na generalidade, o aumento quer da eficiência de pré aquecimento quer da eficiência de isolamento dinâmico.

Conclusões Configuração Tampão

Devido à inexistência de caudal de ventilação, prevê-se o agravamento da temperatura no interior do canal e ao mesmo tempo, a impossibilidade de determinar as eficiências de pré aquecimento e de isolamento dinâmico, leva à impossibilidade de comparação com as restantes configurações. A verificação da temperatura média do ar no interior do canal, a temperatura média da superfície do vidro interior e os ganhos solares directos poderão mostrar o comportamento desta configuração. Contudo, o dia em que foram registados dados, existiram períodos de céu nublado sem incidência máxima da radiação solar na fachada, tendo sido registados valores de temperatura média do ar no canal não superiores a 35°C, o que para outras configurações é um valor considerado normal. Para se ter uma noção da sua capacidade em remover os ganhos solares, compararam-se os fluxos de calor que entraram na sala durante as horas de maior intensidade da radiação para tampão (T) com o sombreamento a B45, com um dia de sol aberto para a configuração fluxo exterior cruzado (FEC). Concluiu-se que para FEC, e com o sombreamento a B0, chegou à sala 90 W/m². Para T e apesar do dia enublado chegou à sala 190W/m², o que demonstra o fraco desempenho térmico desta configuração mesmo em dias enublados.

Desempenho do sombreamento por persiana veneziana vs cortina têxtil

Os resultados obtidos em estudos anteriores permitem uma comparação do desempenho do sistema de sombreamento por persiana veneziana com cortina têxtil. Contudo, não será possível comparar a configuração fluxo interior devido à inexistência de dados.
Os resultados obtidos para cortina têxtil, com valores de $\varepsilon > 75\%$, foram os seguintes:

Fluxo Exterior - B (21h:50mins)
Fluxo Exterior Cruzado – M (17h:40mins)
Fluxo de Insuflação – T (14h:40mins)
Fluxo de Extracção – M (18h:30mins)

Comparando com os valores obtidos para persiana veneziana, o tempo de funcionamento acima de 75% e com vantagem para cortina têxtil ocorre para fluxo exterior e fluxo exterior cruzado. Apesar de não ter sido considerado, seria também expectável vantagem relativamente à persiana veneziana para cortina têxtil, quando a funcionar em fluxo interior.

A persiana veneziana leva vantagem para fluxo de insuflação e fluxo de extracção.

Na realidade o tempo de funcionamento acima de 75% para a cortina têxtil para todas as configurações abordadas ocorre maioritariamente à noite, altura do dia onde o efeito de isolamento dinâmico não é necessário. A cortina têxtil mostra uma subida progressiva da eficiência desde o nascer do sol até ao final do dia, altura em que assume o valor máximo em todas as configurações em causa.

No caso das persianas venezianas, o valor máximo de eficiência de isolamento dinâmico ocorre precisamente durante as horas de forte radiação solar em que se torna absolutamente necessário remover calor do interior do canal e com isto garantir isolamento térmico ao interior.

Perspectivas Futuras

Será absolutamente necessário validar resultados de simulação numérica computorizada, comparando-os com os resultados obtidos por via experimental. Uma vez validados, os softwares podem fornecer uma rápida e precisa previsão do desempenho desta tecnologia. Com a garantia de que a ferramenta informática é confiável, a economia de tempo e meios passa a ser uma realidade que até então não foi possível. Contudo, a vertente experimental será sempre o melhor trunfo da ciência.

Ter em conta a cor e o material utilizado para o sombreamento devido a efeitos convectivos e de absorção de calor que podem ocorrer caso o sombreamento não se mostre o mais adequado, são
importantes factores a serem estudados. Estes dois fenómenos ocorrendo em maior ou menor escala podem alterar significativamente o bom funcionamento deste tipo de sistemas.

Por outro lado, deverão ser efectuadas campanhas de medição mais longas do que a que foi aqui trabalhada e que abranjam pelo menos um ano para que seja possível comparar o desempenho de cada configuração durante as estações de aquecimento, arrefecimento e meia estação.

Obviamente, o efeito do vento e a incidência da radiação em edifícios de maior envergadura pode alterar por completo o que aqui foi concluído, sendo mais uma vez as ferramentas de simulação numérica (quando devidamente validadas), essenciais para prever com maior detalhe o que será expectável deste tipo de tecnologia.

Este trabalho oferece a possibilidade de escolha da configuração e do melhor sistema de sombreamento para o clima em Portugal, sendo absolutamente necessário assumir factores essenciais que aqui não foram considerados, como é o caso das perdas de calor pela envolvente.
Anexos
Fluxo de Ar Exterior
Condições Ambiente (Sombreamento ao nível 1) – Figuras A1, A2, A3, A4, A5 e A6

Condições no interior do canal e radiação (Sombreamento ao nível 1) – Figuras B1, B2, B3, B4, B5, B6, B7, B8 e B9

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 1) – Figuras C1, C2,
Figura A1

Temperatura do Ar Exterior

- Tout B0 15/04
- Tout B45 24/04
- Tout B90 30/04

Figura A2

Radiação Solar Vertical Exterior

- Rad Vext B0 15/04
- Rad Vext B45 24/04
- Rad Vext B90 30/04
Radiação Solar Horizontal Exterior

![Graph of Radiação Solar Horizontal Exterior](image)

Figura A3

Velocidade e Direcção do Vento

![Graph of Velocidade e Direcção do Vento](image)

Figura A4
Comportamento Térmico de Fachadas Ventiladas

Figura A5

Figura A6
Comportamento Térmico de Fachadas Ventiladas

Figura B1

Figura B2
Comportamento Térmico de Fachadas Ventiladas

Figura B3

Figura B4
Radiação de comprimento de onda curto que chega à sala

Fluxo de Calor que Atravessa o Envidraçado Interior

Figura B5

Figura B6
Comportamento Térmico de Fachadas Ventiladas

Figura B7

Figura B8
Temperatura Média do Sombreamento a Diferentes Alturas

Figura B9

Eficiência de Pré Aquecimento

Figura C1
Figura C2
Comportamento Térmico de Fachadas Ventiladas

Fluxo Exterior Cruzado
Comportamento Térmico de Fachadas Ventiladas

Condições Ambiente (Sombreamento ao nível 1) – Figuras D1, D2, D3, D4 e D5

Condições Ambiente (Sombreamento ao nível 2) – Figuras E1, E2, E3, E4 e E5

Condições Ambiente (Sombreamento ao nível 3) – Figuras F1, F2, F3 e F4

Condições no interior do canal e radiação (Sombreamento ao nível 1) – Figuras G1, G2, G3, G4, G5, G6 E G7

Condições no interior do canal e radiação (Sombreamento ao nível 2) – Figuras H1, H2, H3, H4, H5, H6 E H7

Condições no interior do canal e radiação (Sombreamento ao nível 3) – Figuras I1, I2, I3 e I4

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 1) – Figuras J1, J2,

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 2) – Figuras K1, K2,

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 3) – Figuras L1, L2,
Comportamento Térmico de Fachadas Ventiladas

Figura D1

Temperatura do Ar Exterior

Figura D2

Radiação Solar Vertical Exterior
Figura D3

Figura D4
Comportamento Térmico de Fachadas Ventiladas

Figura D5

Figura E1
Radiação Solar Vertical Exterior

Figura E2

Radiação Solar Horizontal Exterior

Figura E3
Comportamento Térmico de Fachadas Ventiladas

Velocidade e Direcção do Vento

Figura E4

Velocidade e Direcção do Vento

Figura E5
Comportamento Térmico de Fachadas Ventiladas

Figura F1

![Temperatura do Ar Exterior](image1)

Figura F2

![Radiação Solar Vertical Exterior](image2)
Comportamento Térmico de Fachadas Ventiladas

Figura F3

Radiação Solar Horizontal Exterior

Figura F4

Velocidade e Direcção do Vento
Comportamento Térmico de Fachadas Ventiladas

Figura G1

Figura G2
Comportamento Térmico de Fachadas Ventiladas

Figura G3

Temperatura Média do Ar no Canal

<table>
<thead>
<tr>
<th>Hora [hh:mm]</th>
<th>Temperatura Média do Ar no Canal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>15°C</td>
</tr>
<tr>
<td>3:00</td>
<td>20°C</td>
</tr>
<tr>
<td>6:00</td>
<td>25°C</td>
</tr>
<tr>
<td>9:00</td>
<td>30°C</td>
</tr>
<tr>
<td>12:00</td>
<td>35°C</td>
</tr>
<tr>
<td>15:00</td>
<td>30°C</td>
</tr>
<tr>
<td>18:00</td>
<td>25°C</td>
</tr>
<tr>
<td>21:00</td>
<td>20°C</td>
</tr>
<tr>
<td>0:00</td>
<td>15°C</td>
</tr>
</tbody>
</table>

- **T Med Canal B0 13/05**
- **T Med Canal B90 10/05**

Figura G4

Radiação de comprimento de onda curto que chega à sala

<table>
<thead>
<tr>
<th>Hora [hh:mm]</th>
<th>Radiação de comprimento de onda curto que chega à sala [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>5 [W/m²]</td>
</tr>
<tr>
<td>3:00</td>
<td>10 [W/m²]</td>
</tr>
<tr>
<td>6:00</td>
<td>15 [W/m²]</td>
</tr>
<tr>
<td>9:00</td>
<td>20 [W/m²]</td>
</tr>
<tr>
<td>12:00</td>
<td>25 [W/m²]</td>
</tr>
<tr>
<td>15:00</td>
<td>30 [W/m²]</td>
</tr>
<tr>
<td>18:00</td>
<td>25 [W/m²]</td>
</tr>
<tr>
<td>21:00</td>
<td>20 [W/m²]</td>
</tr>
<tr>
<td>0:00</td>
<td>5 [W/m²]</td>
</tr>
</tbody>
</table>

- **Rad Vint B0 13/05**
- **Rad Vint B90 10/05**
Comportamento Térmico de Fachadas Ventiladas

Fluxo de Calor que Atravessa o Envidraçado Interior

![Fluxo de Calor que Atravessa o Envidraçado Interior](image)

Figura G5

Temperatura Média do Sombreamento a Diferentes Alturas

![Temperatura Média do Sombreamento a Diferentes Alturas](image)

Figura G6
Comportamento Térmico de Fachadas Ventiladas

Figura G7

Temperatura Média do Sombreamento a Diferentes Alturas

<table>
<thead>
<tr>
<th>Temperatura Média do Sombreamento a Diferentes Alturas</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Med SB N1 B90 10/05</td>
</tr>
<tr>
<td>T Med SB N2 B90 10/05</td>
</tr>
<tr>
<td>T Med SB N3 B90 10/05</td>
</tr>
</tbody>
</table>

Figura H1

Caudal de Ventilação vs ΔT Interior e Exterior

<table>
<thead>
<tr>
<th>Caudal de Ventilação vs ΔT Interior e Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gg M0 20/06</td>
</tr>
<tr>
<td>T gap-Tout M0 20/06</td>
</tr>
</tbody>
</table>
Comportamento Térmico de Fachadas Ventiladas

Figura H2

Figura H3
Comportamento Térmico de Fachadas Ventiladas

Figura H4

Radiação de comprimento de onda curto que chega à sala

Figura H5

Fluxo de Calor que Atravessa o Envidraçado Interior
Comportamento Térmico de Fachadas Ventiladas

Figura H6

Temperatura Média do Sombreamento a Diferentes Alturas

Figura H7

Vertente Experimental
Comportamento Térmico de Fachadas Ventiladas

Figura I1

Figura I2
Comportamento Térmico de Fachadas Ventiladas

Figura I3

Figura I4
Comportamento Térmico de Fachadas Ventiladas

Figura J1

[Diagrama de Eficiência de Pré Aquecimento]

η_B0 13/05
η_B90 10/05

Figura J2

[Diagrama de Eficiência de Isolamento Dinâmico]
Comportamento Térmico de Fachadas Ventiladas

Figura K1

Figura K2
Comportamento Térmico de Fachadas Ventiladas

Figura L1

Figura L2
Fluxo de Insuflação
Comportamento Térmico de Fachadas Ventiladas

Condições Ambiente (Sombreamento ao nível 1) – Figuras M1, M2, M3, M4, M5 e M6

Condições Ambiente (Sombreamento ao nível 2) – Figuras N1, N2, N3, N4, N5 e N6

Condições Ambiente (Sombreamento ao nível 3) – Figuras O1, O2, O3 e O4

Condições no interior do canal e radiação (Sombreamento ao nível 1) – Figuras P1, P2, P3, P4, P5, P6, P7, P8 e P9

Condições no interior do canal e radiação (Sombreamento ao nível 2) – Figuras Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 e Q9

Condições no interior do canal e radiação (Sombreamento ao nível 3) – Figuras R1, R2, R3 e R4

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 1) – Figuras S1, S2,

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 2) – Figuras T1, T2,

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 3) – Figuras U1, U2,
Comportamento Térmico de Fachadas Ventiladas

Figura M1

Figura M2
Comportamento Térmico de Fachadas Ventiladas

Figura M3

![Radiação Solar Horizontal Exterior](image)

Figura M4

![Velocidade e Direcção do Vento](image)
Figura M5

Figura M6
Comportamento Térmico de Fachadas Ventiladas

Figura N1

Figura N2
Figura N3

Figura N4
Comportamento Térmico de Fachadas Ventiladas

Figura N5

Figura N6
Comportamento Térmico de Fachadas Ventiladas

Figura O1

Figura O2
Figura O3

Figura O4
Comportamento Térmico de Fachadas Ventiladas

Figura P1

Figura P2
Figura P3

Figura P4
Comportamento Térmico de Fachadas Ventiladas

Figura P5

Radiação de comprimento de onda curto que chega à sala

Fluxo de Calor que Atravessa o Envidraçado Interior

Vertente Experimental 133
Comportamento Térmico de Fachadas Ventiladas

Temperatura Média do Sombreamento a Diferentes Alturas

Figura P7

![Graph](attachment:image1.png)

Temperatura Média do Sombreamento a Diferentes Alturas

Figura P8

![Graph](attachment:image2.png)
Comportamento Térmico de Fachadas Ventiladas

![Temperatura Média do Sombreamento a Diferentes Alturas](image1)

Figura P9

![Caudal de Ventilação vs ΔT Interior e Exterior](image2)

Figura Q1
Comportamento Térmico de Fachadas Ventiladas

Figura Q2

Figura Q3
Comportamento Térmico de Fachadas Ventiladas

Figura Q4

Figura Q5
Figura Q6

Fluxo de Calor que Atravessa o Envidraçado Interior

Figura Q7

Temperatura Média do Sombreamento a Diferentes Alturas
Figura Q8

Figura Q9
Comportamento Térmico de Fachadas Ventiladas

Figura R1

[Caudal de Ventilação vs ΔT Interior e Exterior](#)

Figura R2

[Temperatura Média do Ar no Canal](#)
Radiação de comprimento de onda curto que chega à sala

Fluxo de Calor que Atravessa o Envidraçado Interior

Figura R3

Figura R4
Comportamento Térmico de Fachadas Ventiladas

Figura S1

Eficiência de Pré Aquecimento

![Graph of Heating Efficiency](image1)

Figura S2

Eficiência de Isolamento Dinâmico

![Graph of Dynamic Insulation Efficiency](image2)
Comportamento Térmico de Fachadas Ventiladas

Figura T1

Figura T2
Figura U1

Figura U2
Fluxo de Extracção
Comportamento Térmico de Fachadas Ventiladas

Condições Ambiente (Sombreamento ao nível 1) – Figuras V1, V2, V3, V4 e V5

Condições Ambiente (Sombreamento ao nível 2) – Figuras W1, W2, W3, W4, W5 e W6

Condições Ambiente (Sombreamento ao nível 3) – Figuras X1, X2, X3 e X4

Condições no interior do canal e radiação (Sombreamento ao nível 1) – Figuras Y1, Y2, Y3, Y4, Y5, Y6 e Y7

Condições no interior do canal e radiação (Sombreamento ao nível 2) – Figuras Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 e Z9

Condições no interior do canal e radiação (Sombreamento ao nível 3) – Figuras AA1, AA2, AA3 e AA4

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 1) – Figuras AB1, AB2,

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 2) – Figuras AC1, AC2,

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 3) – Figuras AD1, AD2,
Comportamento Térmico de Fachadas Ventiladas

Figura V1

Temperatura do Ar Exterior

- Temperatura do Ar Exterior: Tout B0 17/06
- Temperatura do Ar Exterior: Tout B90 13/06

Figura V2

Radiação Solar Vertical Exterior

- Radiação Solar Vertical Exterior: Rad Vext B0 17/06
- Radiação Solar Vertical Exterior: Rad Vext B90 13/06
Comportamento Térmico de Fachadas Ventiladas

Figura V3

Figura V4
Comportamento Térmico de Fachadas Ventiladas

Figura W2

![Radiação Solar Vertical Exterior](attachment:figure_w2.png)

Figura W3

![Radiação Solar Horizontal Exterior](attachment:figure_w3.png)
Comportamento Térmico de Fachadas Ventiladas

Figura W4

Figura W5
Figura W6

Figura X1
Comportamento Térmico de Fachadas Ventiladas

Figura X2

![Radiação Solar Vertical Exterior](image1)

Figura X3

![Radiação Solar Horizontal Exterior](image2)
Comportamento Térmico de Fachadas Ventiladas

Figura X4

Figura Y1
Comportamento Térmico de Fachadas Ventiladas

![Diagrama de Caudal de Ventilação vs ΔT Interior e Exterior](image)

Figura Y2

![Diagrama de Temperatura Média do Ar no Canal](image)

Figura Y3
Comportamento Térmico de Fachadas Ventiladas

Figura Y4

Radiação de comprimento de onda curto que chega à sala

Figura Y5

Fluxo de Calor que Atravessa o Envidraçado Interior
Comportamento Térmico de Fachadas Ventiladas

Figura Y6

Figura Y7
Figura Z1

Caudal de Ventilação vs ΔT Interior e Exterior

Figura Z2
Comportamento Térmico de Fachadas Ventiladas

Figura Z3

Figura Z4
Comportamento Térmico de Fachadas Ventiladas

Figura Z5

Radiação de comprimento de onda curto que chega à sala

Figura Z6

Fluxo de Calor que Atravessa o Envidraçado Interior
Comportamento Térmico de Fachadas Ventiladas

Figura Z7

![Diagrama de Temperatura Média do Sombreamento a Diferentes Alturas](image1)

Figura Z8

![Diagrama de Temperatura Média do Sombreamento a Diferentes Alturas](image2)
Temperatura Média do Sombreamento a Diferentes Alturas

![Graph showing temperature variations](image1)

Figura Z9

Caudal de Ventilação vs ΔT Interior e Exterior

![Graph showing ventilation flow vs temperature difference](image2)

Figura AA1
Comportamento Térmico de Fachadas Ventiladas

Figura AA2

Temperatura Média do Ar no Canal

<table>
<thead>
<tr>
<th>Hora [hh:mm]</th>
<th>Temperatura Média do Ar no Canal</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>10</td>
</tr>
<tr>
<td>01:00</td>
<td>12</td>
</tr>
<tr>
<td>02:00</td>
<td>15</td>
</tr>
<tr>
<td>03:00</td>
<td>20</td>
</tr>
<tr>
<td>04:00</td>
<td>25</td>
</tr>
<tr>
<td>05:00</td>
<td>30</td>
</tr>
<tr>
<td>06:00</td>
<td>35</td>
</tr>
<tr>
<td>07:00</td>
<td>40</td>
</tr>
</tbody>
</table>

Figura AA3

Radiação de comprimento de onda curto que chega à sala

<table>
<thead>
<tr>
<th>Hora [hh:mm]</th>
<th>Radiação de comprimento de onda curto que chega à sala</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>0</td>
</tr>
<tr>
<td>01:00</td>
<td>5</td>
</tr>
<tr>
<td>02:00</td>
<td>10</td>
</tr>
<tr>
<td>03:00</td>
<td>15</td>
</tr>
<tr>
<td>04:00</td>
<td>20</td>
</tr>
<tr>
<td>05:00</td>
<td>25</td>
</tr>
<tr>
<td>06:00</td>
<td>30</td>
</tr>
<tr>
<td>07:00</td>
<td>35</td>
</tr>
<tr>
<td>08:00</td>
<td>40</td>
</tr>
</tbody>
</table>

Vertente Experimental
Comportamento Térmico de Fachadas Ventiladas

Figura AA4

![Fluxo de Calor que Atravessa o Envidraçado Interior](image)

Figura AB1

![Eficiência de Pré Aquecimento](image)
Comportamento Térmico de Fachadas Ventiladas

Figura AB2

Figura AC1
Comportamento Térmico de Fachadas Ventiladas

Figura AC2

EFICIÊNCIA DE ISOLAMENTO DINÂMICO

Hora [hh:mm]

Figura AD1

EFICIÊNCIA DE PRÉ AQUECIMENTO

Hora [hh:mm]
Eficiência de Isolamento Dinâmico

Figura AD2
Fluxo Interior
Comportamento Térmico de Fachadas Ventiladas

Condições Ambiente (Sombreamento ao nível 2) – Figuras AE1, AE2, AE3 e AE4

Condições no interior do canal e radiação (Sombreamento ao nível 2) – Figuras AF1, AF2, AF3, AF4 e AF5

Eficiência de Pré Aquecimento e Eficiência de Isolamento Dinâmico (Sombreamento ao nível 2) – Figuras AG1, AG2,
Comportamento Térmico de Fachadas Ventiladas

Figura AE1

Temperatura do Ar Exterior

Figura AE2

Radiação Solar Vertical Exterior
Comportamento Térmico de Fachadas Ventiladas

Figura AE3

Figura AE4
Comportamento Térmico de Fachadas Ventiladas

Figura AF1

Caudal de Ventilação vs ΔT Interior e Exterior

Figura AF2

Temperatura Média do Ar no Canal
Comportamento Térmico de Fachadas Ventiladas

Figura AF3

Figura AF4
Temperatura Média do Sombreamento a Diferentes Alturas

<table>
<thead>
<tr>
<th>Hora [hh:mm]</th>
<th>Temperatura Média do Sombreamento a Diferentes Alturas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>T Med SB N1 M45 25/05</td>
</tr>
<tr>
<td></td>
<td>T Med SB N2 M45 25/05</td>
</tr>
<tr>
<td></td>
<td>T Med SB N3 M45 25/05</td>
</tr>
</tbody>
</table>

Figura AF5

Eficiência de Pré Aquecimento

<table>
<thead>
<tr>
<th>Hora [hh:mm]</th>
<th>Eficiência de Pré Aquecimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>η M45 25/05</td>
</tr>
</tbody>
</table>

Figura AG1
Comportamento Térmico de Fachadas Ventiladas

Figura AG2

Eficiência de Isolamento Dinâmico

Hora [hh:mm:ss]
Configuração Tampão
Condições Ambiente (Sombreamento ao nível 1) – Figuras AH1, AH2, AH3 e AH4

Condições no interior do canal e radiação (Sombreamento ao nível 1) – Figuras AI1, AI2, AI3 e AI4
Comportamento Térmico de Fachadas Ventiladas

Figura AH1

Temperatura do Ar Exterior

```plaintext
Hora [hh:mm]
0:00  3:00  6:00  9:00  12:00  15:00  18:00  21:00  0:00

0  5  10  15  20  25
```

Figura AH2

Radiação Solar Vertical Exterior

```plaintext
Hora [hh:mm]
0:00  3:00  6:00  9:00  12:00  15:00  18:00  21:00  0:00

0  100  200  300  400  500  600
```
Comportamento Térmico de Fachadas Ventiladas

Figura AH3

Figura AH4
Comportamento Térmico de Fachadas Ventiladas

Figura AI1

Temperatura Média do Ar no Canal e ΔT Interior e Exterior

Figura AI2

Radiação de comprimento de onda curto que chega à sala
Comportamento Térmico de Fachadas Ventiladas

Fluxo de Calor que Atravessa o Envidraçado Interior

Figura AI3

Temperatura Média do Sombreamento a Diferentes Alturas

Figura AI4
Resultados Cortina Têxtil
Comportamento Térmico de Fachadas Ventiladas

Eficiência de Isolamento Dinâmico para Fluxo Exterior

![Figura TXT 1](image)

Eficiência de Isolamento Dinâmico para Fluxo Exterior Cruzado

![Figura TXT 2](image)
Comportamento Térmico de Fachadas Ventiladas

Eficiência de Isolamento Dinâmico para Fluxo de Insuflação

![Figura TXT 3]

Eficiência de Isolamento Dinâmico para Fluxo de Extracção

![Figura TXT 4]
Configuração Tampão

Figura TXT 5

Figura TXT 6
Figura TXT 7
8 Referências Bibliográficas

Comportamento Térmico de Fachadas Ventiladas

