Visual results with the use of prismatic lenses in the treatment of congenital nystagmus – a clinical case

Ilda Maria Poças, MSc; Pedro Miguel Lino, MD
Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Portugal

Introduction:
Nystagmus is a periodic and involuntary movement of the eyes, idiopathic or associated with defects of the visual afferent system (retina or optic pathway), and that may or may not be associated to squint. Can be horizontal, vertical or mixed. It is important to establish a differential diagnosis between the various types of nystagmus in order to choose the most appropriate therapeutic approach to each case. The nystagmus is normally blocked when the eyes are positioned in a particular way. This makes the child adopt a posture of ocular torticollis that reduces the nystagmus form movements, improving the vision in this position. The assessment should include an eye exam and orthoptic assessment (clinical history, visual acuity and refraction with cycloplegic, biomicroscopy and fundus, motor and sensory study, including the study of nystagmatic beats, by searching its meaning, speed, amplitude of the beats and the block positions). This is complemented with electrophysiological (ERG and PEV) and neurological studies. The available therapeutic approaches are diverse (optical, orthoptic, prismatic, pharmacologic and surgical) and can be used in an isolated manner or combined. Treatment with prisms to block the nystagmus reduces abnormal head position and improves visual acuity. A way to promote the blocking of the nystagmic movements is by using prismatic lenses with opposite bases, to block or minimize the oscillatory movements.

Aim:
To present and discuss a clinical case of a child with congenital nystagmus whose vision and posture improved with the use of prisms.

Methods:
Case report in 30-months-old caucasian male infant with horizontal nystagmus at 3-months-old and otherwise normal growth and development, and irrelevant family history. Ophthalmic examination included slit lamp examination, fundus, refractive study, electrophysiological and magnetic resonance tests, measurement of VA over time with the Teller Acuity Cards (TAC) in the distance agreed for his age.

Results:
At 6-months-old VA with TAC to 38 cm
RE = 20/300 LE = 20/400 OU (Binocularity) = 20/300

Pendular nystagmus with rapid phase to the right and moderate amplitude. Ductions and versions were unremarkable


Electrophysiological study f-ERG and PEV (ISCEV protocol) with amplitude of the waves a and b for the rod scotopic responses, combined cone rod, photopic and 30Hz cone, normal, with slight asymmetry of the RE response in PEV (figure 1).

At 9-month-old VA with TAC to 38 cm:
RE = 20/250 LE = 20/300 OU = 20/150

The mother noted a persistent head rotation to the right and eyes turned to the Left (figure 2). No oscillopia. Orthoptia was present at near and distance fixation.

When the head was turned to the right and the eyes in levoversion the nystagmus decreased in a null zone.

At 18-months-old VA with TAC to 55 cm:
RE = 20/200 LE = 20/100 OU = 20/80

(reference value is OU = 20/30 – 20/100 and 20/40 – 20/100 monocular)
Child's anomalous head position had become increasingly worse along the months (figure 3).

At 24-months-old, updated refraction (with atropine):
RE -1.50D sph LE -0.50D sph
Prisms prescription:
RE 8° BO LE 8° BI

Visual stimulation with multimedia devices commenced.

At 30-months-old (with refraction and prisms):
VA (Cambridge Cards):
RE = LE = OU = 6/18

Stereoscopic Acuity: 400" (Titmus Test)

Anomalous head position reduced (figure 4)

Improvement of global and local movement noted.

Discussion/Conclusion:
The patient had a low monocular and binocular visual acuity associated with nystagmus (when compared with the normal range for his age). In order to improve his visual acuity, he developed an anomalous head position that was decreased with prismatic prescription.

After prescribed prismatic correction a decrease in head anomalous position was observed, as well as an improvement in visual acuity and binocularly, and an improvement in ocular motility and fine motor.

Although visual acuity after prismatic adaptation remained low for his age.

Therefore, it is very important to:
- Continue visual stimulation, which can be done with multimedia devices, or to stimulate binocular single vision with appropriate software.
- Perform constant actualization of skyascopy, while waiting for surgical treatment (Kestenbaum operation)

Bibliography:

Images’ Sources:
- Authors’ photos

Financial disclosure:
The authors have no financial interest in the presentation of this paper.

Author Contact’s:
Ilda Maria Poças, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990 - 096 Lisboa, Portugal; ilda.poacas@estesi.ipol.pt, Tel (351) 218 980 400, Fax. (351) 218 980 460