Weakly spectrally complete pair of matrices

Laura Iglésias & Fernando C. Silva

To cite this article: Laura Iglésias & Fernando C. Silva (2016) Weakly spectrally complete pair of matrices, Linear and Multilinear Algebra, 64:5, 942-950, DOI: 10.1080/03081087.2015.1067668

To link to this article: http://dx.doi.org/10.1080/03081087.2015.1067668

Published online: 24 Jul 2015.
Weakly spectrally complete pair of matrices
Laura Iglésiasab* and Fernando C. Silvabc

aÁrea Departamental de Matemática, Instituto Superior de Engenharia de Lisboa–ISEL, Lisboa, Portugal; bCentro de Análise Funcional, Estruturas Lineares e Aplicações (CEAFEL), Universidade de Lisboa, Lisboa, Portugal; cDepartamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal

Communicated by J.F. Queiró
(Received 20 April 2015; accepted 17 June 2015)

Let A and B be $n \times n$ matrices over an algebraically closed field F. Let c_1, \ldots, c_n be elements of F such that $\det(AB) = c_1 \ldots c_n$ and $\# \{i \in \{1, \ldots, n\} : c_i \neq 0\} \leq \min\{\text{rank}(A), \text{rank}(B)\}$. We give necessary and sufficient condition for the existence of matrices A' and B' similar to A and B, respectively, such that $A'B'$ has eigenvalues c_1, \ldots, c_n.

Keywords: eigenvalues; invariant polynomials; factorization of matrices

AMS Subject Classifications: 15A18; 15A23

Let F be an algebraically closed field and $A, B \in F^{n \times n}$, where $n \geq 2$.

In this paper, we study the possible eigenvalues of the product $A'B'$, where $A', B' \in F^{n \times n}$ are matrices similar to A, B, respectively. If $c_1, \ldots, c_n \in F$ are the eigenvalues of $A'B'$ then there are two conditions that the eigenvalues must satisfy:

\[
\det(AB) = c_1 \ldots c_n, \quad (1)
\]
\[
\# \{i \in \{1, \ldots, n\} : c_i \neq 0\} \leq \min\{\text{rank}(A), \text{rank}(B)\}. \quad (2)
\]

The pair (A, B) is **spectrally complete**, if for every sequence $c_1, \ldots, c_n \in F$ such that (1) is satisfied, there exist matrices $A', B' \in F^{n \times n}$ similar to A, B, respectively, such that $A'B'$ has eigenvalues c_1, \ldots, c_n.

A complete description of the spectrally complete pair of matrices was given in [1], and previously, was given in [2] for the nonsingular case. The concept of spectral completeness was introduced in [3] in order to study the possible eigenvalues of the sum of matrices.

The pair (A, B) is said to be **weakly spectrally complete** if, for every sequence $c_1, \ldots, c_n \in F$ such that (1) and (2) are satisfied, there exist matrices A', B' similar to A, B, respectively, such that $A'B'$ has eigenvalues c_1, \ldots, c_n.

Note that there exist A', B' similar to A, B, respectively, such that $A'B'$ has eigenvalues c_1, \ldots, c_n if and only if there exists A'' similar to A such that $A''B$ has eigenvalues c_1, \ldots, c_n if and only if there exists B'' similar to B such that AB'' has eigenvalues c_1, \ldots, c_n.

*Corresponding author. Email: lazevedo@adm.isel.pt

© 2015 Taylor & Francis
Given a monic polynomial \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \), we denote by \(C(f) \) the companion matrix of \(f \):

\[
C(f) = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n-1} & -a_{n-2} & \cdots & \cdots & 0 \\
-a_0 & -a_1 & \cdots & \cdots & 1
\end{bmatrix} \in \mathbb{F}^{n \times n}.
\]

We denote by \(i(A) \) the number of nonconstant invariant polynomials of \(A \). We make the convention that the invariant polynomials are always monic. If \(\alpha_1, \ldots, \alpha_n \) are the invariant polynomials of \(A \), then \(A \) is similar to \(C(\alpha_{n-i(A)+1}) \oplus \cdots \oplus C(\alpha_n) \).

We say that \(\lambda \in \mathbb{F} \) is a primary eigenvalue of \(A \) if \(\lambda \) is an eigenvalue of \(\alpha_{n-i(A)+1} \). Note that if \(\lambda \) is a primary eigenvalue of \(A \), then \(\text{rank}(A - \lambda I_n) = n - i(A) \).

If \(C = [c_{i,j}] \in \mathbb{F}^{n \times n} \) is a matrix such that \(c_{i,j} = 0 \) if \(j > i + 1 \), we denote by \(\chi(C) \) the number of indices \(i \in [1, \ldots, n-1] \) such that \(c_{i,i+1} \neq 0 \). We have \(i(C) \leq n - \chi(C) \).

The next theorem is our main theorem:

Theorem 1 Let \(\alpha_1, \ldots, \alpha_n \) and \(\beta_1, \ldots, \beta_n \) be the invariant polynomials of \(A \) and \(B \), respectively. The pair \((A, B)\) is weakly spectrally complete if and only if the following are satisfied:

1. If \(i(A) + i(B) > n \) and \(\alpha_{n-i(A)+1}(x) = x - \lambda, \) with \(\lambda \in \mathbb{F} \{0\} \), then
 \[
 \beta_1(x) \cdots \beta_{i(A)}(x) = x^{i(A)+i(B)-n};
 \]
2. If \(i(A) + i(B) > n \) and \(\beta_{n-i(B)+1}(x) = x - \mu, \) with \(\mu \in \mathbb{F} \{0\} \), then
 \[
 \alpha_1(x) \cdots \alpha_{i(B)}(x) = x^{i(A)+i(B)-n};
 \]
3. At least one of the following conditions holds:
 - \(n = 2 \),
 - \(\deg(\alpha_n) \neq 2 \),
 - \(\deg(\beta_n) \neq 2 \),
 - \(i(A) \leq i(B) \) and 0 is a primary eigenvalue of \(B \),
 - \(i(B) \leq i(A) \) and 0 is a primary eigenvalue of \(A \).

Lemma 2 If the pair \((A, B) \) is weakly spectrally complete, then (1.1) is satisfied.

Proof Suppose that \((A, B) \) is weakly spectrally complete, \(i(A) + i(B) > n \) and \(\alpha_{n-i(A)+1}(x) = x - \lambda, \) with \(\lambda \in \mathbb{F} \{0\} \). If \(A \) and \(B \) are nonsingular then for every sequence \(c_1, \ldots, c_n \in \mathbb{F} \) such that \(\det(AB) = c_1 \cdots c_n \), there exist matrices \(A', B' \in \mathbb{F}^{n \times n} \) similar to \(A, B \), respectively, such that \(A'B' \) has eigenvalues \(c_1, \ldots, c_n \) and then the pair \((A, B) \) is spectrally complete. By Theorem 1 of [2], we have \(i(A) + i(B) \leq n \), which is impossible. Then one of the matrices \(A, B \) is singular and there exists a matrix \(B' \in \mathbb{F}^{n \times n} \) similar to \(B \) such that \(AB' \) has all its eigenvalues equal to 0. Let \(\gamma_1(x), \ldots, \gamma_n(x) \) be the invariant polynomials of \(AB' \). Then

\[
\gamma_1(x) \cdots \gamma_n(x) = x^n.
\]
We have \(AB' = \lambda B' + (A - \lambda I_n)B' \). If \(\beta_1(x)|\ldots|\beta_n(x) \) are the invariant polynomials of \(B \) then \(\beta_1(\lambda^{-1}x)|\ldots|\beta_n(\lambda^{-1}x) \) are the invariant polynomials of \(\lambda B' \). As \(\lambda \) is a primary eigenvalue of \(A \), we have \(\text{rank}(A - \lambda I_n)B' \leq n - i(A) \), and by [4, Theorem 2], we conclude that
\[
\beta_j(\lambda^{-1}x)|\gamma_j+n-i(A)(x), \quad j \in \{1, \ldots, i(A)\}. \tag{4}
\]
Using (3) and (4), the invariant polynomials \(\beta_{n-i(B)+1}(x), \ldots, \beta_{i(A)}(x) \) must be powers of \(x \) and \(\text{rank}(B) = n - i(B) < i(A) \), \leq \text{rank}(A).

Let \(c_1 = \cdots = c_{n-i(B)} = 1 \) and \(c_{i(B)} = \cdots = c_n = 0 \). There exists a matrix \(B'' \in F^{n \times n} \) similar to \(B \) such that \(AB'' \) has eigenvalues \(c_1, \ldots, c_n \). Let \(\delta_1(x)|\ldots|\delta_n(x) \) be the invariant polynomials of \(AB'' \). As in the previous argument, we have
\[
\beta_j(\lambda^{-1}x)|\delta_{j+n-i(A)}(x), \quad j \in \{1, \ldots, i(A)\}.
\]

Note that
\[
\delta_1(x) \ldots \delta_n(x) = x^{i(B)}(x - 1)^{n-i(B)} \tag{5}
\]
and \(\text{rank}(AB'') \leq \text{rank}(B'') = n - i(B) \), so \(\delta_{n-i(B)+1}(0) = \cdots = \delta_n(0) = 0 \). Then
\[
\delta_k(x) = x(x - 1)^{l_k}, \quad k \in \{n - i(B) + 1, \ldots, n\},
\]
for some \(l_k \in \mathbb{N}_0 \). Therefore,
\[
\beta_{n-i(B)+1}(x) = \cdots = \beta_{i(A)}(x) = x
\]
and
\[
\beta_1(x) \ldots \beta_{i(A)}(x) = x^{i(A)+i(B)-n}.
\]

\[\text{Lemma 3}\]

If the pair \((A, B)\) is weakly spectrally complete then (1.3) is satisfied.

Proof Suppose that the pair \((A, B)\) is weakly spectrally complete and \(n \neq 2 \), \(\deg(\alpha_n) = \deg(\beta_n) = 2 \). Then \(A \) and \(B \) are similar to matrices of the form
\[
A' = \begin{bmatrix} \lambda I_{i(A)} & * \\ 0 & \nu I_{n-i(A)} \end{bmatrix} \quad \text{and} \quad B' = \begin{bmatrix} \mu I_{i(B)} & * \\ 0 & \epsilon I_{n-i(B)} \end{bmatrix},
\]
respectively, where \(\lambda, \nu \) are the roots of \(\alpha_n \) and \(\mu, \epsilon \) are the roots of \(\beta_n \).

Suppose that \(i(A) \leq i(B) \) as the complementary case is analogous. We shall say that a sequence \(c_1, \ldots, c_n \) of elements of \(F \) are admissible if there exist matrices \(A', B' \) similar to \(A, B \), respectively, such that \(A'B' \) has eigenvalues \(c_1, \ldots, c_n \).

Let \(c_1, \ldots, c_n \in F \) be any admissible sequence. Using the arguments presented in the proof of Theorem 1 of [2], we deduce that there exists a permutation \(\pi \) of \(\{1, \ldots, n\} \) such that
\[
c_{\pi(2i-1)}c_{\pi(2i)} = \lambda\nu\mu\epsilon, \quad 1 \leq i \leq n - i(B) \tag{6}
\]
\[
c_{\pi(j)} = \lambda\mu, \quad 2(n - i(B)) < j \leq n + i(A) - i(B) \tag{7}
\]
\[
c_{\pi(j)} = \nu\mu, \quad n + i(A) - i(B) < j \leq n. \tag{8}
\]

If \(A \) and \(B \) are nonsingular, we can find a sequence \(c_1, \ldots, c_n \in F \) such that \(\det(AB) = c_1 \ldots c_n \) but the equalities (6)–(8) are not satisfied.
Suppose that at least one of the matrices \(A, B \) is singular. As the pair \((A, B)\) is weakly spectrally complete, the sequence of \(n \) zeros is admissible and should satisfy the equalities (6)–(8). Then \(\lambda = \nu = 0 \) or \(\mu = 0 \). If \(\lambda = \nu = 0 \), then the sequence of \(n \) zeros is the only admissible sequence, which contradicts the assumption that the pair \((A, B)\) is weakly spectrally complete, \(A \neq 0 \) and \(B \neq 0 \). Therefore, \(\mu = 0 \) and 0 is a primary eigenvalue of \(B \).

Using the definition of weakly spectrally complete pair, Lemma 11 of [5] can be stated as follows:

Lemma 4 If one of the matrices \(A, B \) is singular and the other is nonderogatory, then the pair \((A, B) \) is weakly spectrally complete.

Lemma 5 [1, Lemma 4] If \(\min(\text{rank}(A), \text{rank}(B)) \geq n - 1 \), one of the matrices \(A, B \) is nonderogatory and the other is nonscalar, then the pair \((A, B) \) is spectrally complete.

According to the two previous Lemmas, we have:

Lemma 6 If one of the matrices \(A, B \) is nonderogatory and the other is nonscalar, then the pair \((A, B) \) is weakly spectrally complete.

Lemma 7 If \(i(A) + i(B) \leq n \) and, either \(n = 2 \) or at least one of the polynomials \(\alpha_n, \beta_n \) has degree different from 2, then \((A, B) \) is weakly spectrally complete.

Proof This proof is by induction on \(n \). If \(\min(\text{rank}(A), \text{rank}(B)) \geq n - 1 \), then, according to [1, Theorem 1], the pair \((A, B) \) is spectrally complete and then is weakly spectrally complete.

Suppose that \(\min(\text{rank}(A), \text{rank}(B)) < n - 1 \). Suppose, without loss of generality [2, Lemma 1], that \(\text{rank}(A) \leq \text{rank}(B) \). If \(B \) is nonderogatory the result follows from Lemma 4. In particular, Lemma 4 covers the case \(n \leq 3 \).

Suppose that \(n \geq 4 \) and \(B \) is derogatory. Let \(c_1, \ldots, c_n \) be elements of \(F \) such that \(\det(AB) = c_1 \ldots c_n \) and \# \{ \(i \in \{1, \ldots, n\} : c_i \neq 0 \} \leq \min(\text{rank}(A), \text{rank}(B)) \) in order to prove that there exist matrices \(A', B' \in F^{n \times n} \) similar to \(A, B \), respectively, such that \(A'B' \) has eigenvalues \(c_1, \ldots, c_n \). Suppose, without loss of generality, that \(c_{n-1} = c_n = 0 \). If there exists \(i \in \{1, \ldots, n - 2\} : c_i \neq 0 \), suppose, without loss of generality, that \(c_1 \neq 0 \).

Case 1. Suppose that \(c_1 \neq 0 \). The matrix \(A \) is similar to the direct sum of the companion matrices of its nonconstant invariant polynomials \(K = C(\alpha_n) \oplus \cdots \oplus C(\alpha_{n-i(A)+1}) \).

- If \(\deg(\alpha_n) \geq 3 \), then, according to [1, Lemma 5], \(K \) is similar to a matrix of the form

\[
K' = \begin{bmatrix}
* & * & 1 \\
* & K_0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\]

where \(K_0 \in F^{(n-2) \times (n-2)} \) is a direct sum of companion matrices, \(\chi(K_0) = \chi(K) - 1 \) and \(\det(K_0) = 0 \). Moreover, if \(i(A) \leq n - 3 \) (i.e. \(\chi(K) \geq 3 \)), then \(K_0 \) has been
chosen so that at least one of the companion matrices appearing in K_0 is of size $u \times u$, with $u \geq 3$ and then the minimum polynomial of K_0 has degree greater than 2;

- If $\deg(\alpha_n) = 2$, then $C(\alpha_n)$ is similar to a matrix of the form

$$\begin{bmatrix} * & 1 \\ 0 & 0 \end{bmatrix}$$

and K is similar to a matrix of the form

$$K' = \begin{bmatrix} * & 0 & 1 \\ 0 & K_0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

where $K_0 = C(\alpha_{n-i(A)+1}) \oplus \cdots \oplus C(\alpha_{n-1})$. Note that $\det K_0 = 0$ and $\chi(K_0) = \chi(K) - 1$.

Analogously, the matrix B is similar to the direct sum of the companion matrices of its nonconstant invariant polynomials $L = C(\beta_n) \oplus \cdots \oplus C(\beta_{n-i(B)+1})$.

- If $\deg(\beta_n) \geq 3$, then, according to a variant of [1, Lemma 5] or a variant of [2, Lemma 4], L is similar to a matrix of the form

$$L' = \begin{bmatrix} 0 & 0 & * \\ 0 & L_0 & * \\ c_1 & * & * \end{bmatrix},$$

where $L_0 \in F^{(n-2)\times(n-2)}$ is a direct sum of companion matrices, $\det(K_0) = \det(L_2 \oplus \cdots \oplus L_r)$, and $\chi(L_0) = \chi(L) - 1$. Moreover, if $i(B) \leq n - 3$ (i.e. $\chi(L) \geq 3$), then L_0 has been chosen so that at least one of the companion matrices appearing in L_0 is of size $u \times u$, with $u \geq 3$ and then the minimum polynomial of L_0 has degree greater than 2;

- If $\deg(\beta_n) = 2$, then $C(\beta_n)$ is similar to a matrix of the form

$$\begin{bmatrix} 0 & * \\ c_1 & * \end{bmatrix}$$

and L is similar to a matrix of the form

$$L' = \begin{bmatrix} 0 & 0 & * \\ 0 & L_0 & 0 \\ c_1 & 0 & * \end{bmatrix},$$

where $L_0 = C(\beta_{n-i(B)-1}) \oplus \cdots \oplus C(\beta_{n-1})$. Note that $\chi(L_0) = \chi(L) - 1$.

We have $\det(K_0L_0) = 0 = c_2 \cdots c_{n-1}, \# \{i \in \{2, \ldots, n-1\} : c_i \neq 0\} \leq \min\{\rank(A), \rank(B)\} - 1 = \min\{\rank(K_0), \rank(L_0)\}$ and $i(K_0) + i(L_0) \leq (n - 2 - \chi(K_0)) + (n - 2 - \chi(L_0)) = 2n - \chi(K) - \chi(L) - 2 = i(A) + i(B) - 2 \leq n - 2$. Now, we shall prove that either $n = 4$ or at least one of the minimum polynomial of the matrices K_0, L_0 has degree greater than 2.
We have $\alpha_n \geq 3$ and $i(A) \leq n - 3$, then the minimum polynomial of the matrix K_0 has degree greater than 2;

- If deg$(\alpha_n) \geq 3$ and $i(B) \leq n - 3$, then the minimum polynomial of the matrix L_0 has degree greater than 2;

- If deg$(\alpha_n) = 2$ and $i(B) > n - 3$, then $(n/2) + (n - 2) \leq i(A) + i(B) \leq n$ and therefore $n = 4$;

- If deg$(\beta_n) = 2$ and $i(A) > n - 3$, then with similar arguments to the previous case, we conclude that $n = 4$.

By the induction assumption, there exist nonsingular matrices $X_0, Y_0 \in F^{(n-2)\times(n-2)}$ such that $X_0 K_0 X_0^{-1} Y_0 L_0 Y_0^{-1}$ has eigenvalues c_2, \ldots, c_{n-1}. Let $X = [1] \oplus X_0 \oplus [1]$ and $Y = [1] \oplus Y_0 \oplus [1]$. The matrix $X^{-1}K'XY^{-1} L'Y$ has eigenvalues c_1, \ldots, c_n.

Case 2. Suppose that $c_1 = 0$. Then $c_1 = \cdots = c_n = 0$. Let $p = \min\{j \in \{n - i(A) + 1, \ldots, n - 1\} : \alpha_j(0) = 0\}$. Let $\alpha'_p = \alpha_p(x)/x$ and $\alpha'_j = \alpha_{j+1}$, for every $j \in \{1, \ldots, n - 1\}$ and $j \neq p - 1$.

The matrix A' is similar to a matrix of the form

$$A' = \begin{bmatrix} A_0 \ast & \ast & \ast \\ \ast & 0 & \ast \\ \ast & \ast & 0 \end{bmatrix},$$

where A_0 has invariant polynomials $\alpha'_1 \ldots \alpha'_{n-1}$ and det$(A_0) = 0$.

Subcase 2.1 Suppose that $i(A) + i(B) < n$ or deg$(\beta_{n-i(B)+1}) = 1$. Let μ be a primary eigenvalue of B. Let $\beta'_{n-i(B)+1}(x) = \beta_{n-i(B)+1}(x)/(x - \mu)$. The matrix B' is similar to a matrix of the form

$$B' = \begin{bmatrix} B_0 \ast & \ast & \ast \\ \ast & 0 & \ast \\ \ast & \ast & 0 \end{bmatrix},$$

where

$$B_0 = C(\beta'_{n-i(B)+1}) + C(\beta_{n-i(B)+2}) + \cdots + C(\beta_n), \text{ if deg}(\beta_{n-i(B)+1}) \geq 2,$$

$$B_0 = C(\beta_{n-i(B)+2}) + \cdots + C(\beta_n), \text{ if deg}(\beta_{n-i(B)+1}) = 1.$$ We have $i(A_0) + i(B_0) \leq n - 1$ and at least one of the minimum polynomials of A_0, B_0 has degree greater than 2. According to the induction assumption, (A_0, B_0) is spectrally complete and it is easy to conclude that (A, B) is also weakly spectrally complete.

Subcase 2.2 Suppose that $i(A) + i(B) = n$ and deg$(\beta_{n-i(B)+1}) \geq 2$. Let $d = \deg(\beta_{n-i(B)+1})$. Analogously to the subcase 2.2.2 of the proof of Theorem 1 of [1], we conclude that

$$\#\{j \in \{1, \ldots, n\} : \deg(\alpha_j) = 1\} \geq d - 1.$$ Then $\alpha_{n-i(A)+d-1}(x) = \cdots = \alpha_{n-i(A)+d-1}(x) = x - \lambda$, where λ is a primary eigenvalue of A. If $\lambda = 0$, then $p = n - i(A) + 1$ and $i(A_0) = i(A) - 1$. Let B' be the matrix similar to B as in the previous subcase. We have $i(A_0) + i(B_0) = n - 1$ and α_1, β_n are the minimum polynomials of A', B'. According to the induction assumption, there exist $X_0, Y_0 \in F^{(n-1)\times(n-1)}$ such that $X_0 A_0 X_0^{-1} Y_0 B_0 Y_0^{-1}$ has eigenvalues c_1, \ldots, c_{n-1}. The matrix $(X_0 \oplus [1]) A'(X_0 \oplus [1])^{-1} (Y_0 \oplus [1]) B'(Y_0 \oplus [1])^{-1}$ has eigenvalues c_1, \ldots, c_n.

Suppose that $\lambda \neq 0$. Let $\alpha''_{p-d}(x) = \alpha_p(x)/x$ and $\alpha'_j = \alpha'_{j+d}$, for every $j \in \{1, \ldots, n - d\}$ and $j \neq p - d$. The matrix A' is permutation similar to a matrix of the form

$$\begin{bmatrix} D \ast & \ast \\ \ast & 0 \end{bmatrix},$$
where \(D = I_{d-1} \oplus [0] \) and \(K_0 \in F^{(n-d) \times (n-d)} \) has invariant polynomials \(\alpha_i'' \). The matrix \(B \) is similar to

\[
C(\beta_{n-i(B)+1}) \oplus L_0, \quad \text{where} \quad L_0 = C(\beta_{n-i(B)+2}) \oplus \cdots \oplus C(\beta_n).
\]

We have \(i(K_0) + i(L_0) = (i(A) - d + 1) + (i(B) - 1) = n - d \) and \(\alpha_n, \beta_n \) are the minimum polynomials of \(A', B' \). Then, we conclude that \((K_0, L_0) \) is weakly spectrally complete. By Lemma 4 the pair \((D, C(\beta_{n-i(B)+1})) \) is also weakly spectrally complete. It is easy to complete the proof.

Lemma 8 If \((1.1)\) and \((1.2)\) are satisfied and at least one of the polynomials \(\alpha_n, \beta_n \) has degree different from 2, then the pair \((A, B) \) is weakly spectrally complete.

Proof By induction on \(n \). The proof has already been done when \(i(A) + i(B) \leq n \).

Suppose that \(i(A) + i(B) > n \). Suppose, without loss of generality [2, Lemma 1], that \(i(A) \geq i(B) \). Then \(\deg(\alpha_{n-i(A)+1}) = 1 \). Let \(p = \#\{j \in \{1, \ldots, n\} : \deg(\alpha_j) = 1\} \) and \(d = \deg(\beta_{n-i(B)+1}) \). In order to obtain a contradiction, assume that \(p < d \). Then

\[
i(A) \leq p + \frac{n-p}{2}, \quad i(B) \leq \frac{n}{d} \leq \frac{n}{p+1}.
\]

From

\[
n+1 \leq i(A) + i(B) \leq p + \frac{n-p}{2} + \frac{n}{p+1},
\]

it follows that \(0 \leq h(p) \), where \(h(p) = p^2 - (n+1)p + n - 2 \), which is impossible because \(h(1) \) and \(h(n) \) are negative numbers. Therefore \(p \geq d \). Let \(\lambda \) be the primary eigenvalue of \(A \). The matrices \(A, B \) are, respectively, similar to the matrices

\[
A' = \lambda I_d \oplus K_0, \quad \text{where} \quad K_0 = C(\alpha_{n-i(A)+d+1}) \oplus \cdots \oplus C(\alpha_n),
\]

\[
B' = C(\beta_{n-i(B)+1}) \oplus L_0, \quad \text{where} \quad L_0 = C(\beta_{n-i(B)+2}) \oplus \cdots \oplus C(\beta_n).
\]

Let \(\alpha_1' \ldots |\alpha_{n-d}' \) and \(\beta_1' \ldots |\beta_{n-d}' \) be the invariant polynomials of the matrices \(K_0 \) and \(L_0 \), respectively. Note that \(i(K_0) = i(A) - d \) and \(i(L_0) = i(B) - 1 \).

Case 1. Suppose that \(\lambda = 0 \). Then \(\text{rank}(A) = n - i(A) \). If \(p = n \), then \(A = 0 \) and the result is trivial.

Suppose that \(p < n \). If \(d = 1 \) and \(C(\beta_{n-i(B)+1}) \) is singular, then \(\text{rank}(L_0) = \text{rank}(B) = n - i(B) \geq n - i(A) = \text{rank}(A) = \text{rank}(K_0) \). If \(d > 1 \) or \(C(\beta_{n-i(B)+1}) \) is nonsingular, then \(\text{rank}(L_0) \geq i(L_0) = i(B) - 1 \geq n - i(A) = \text{rank}(A) = \text{rank}(K_0) \) and \(\text{rank}(B) \geq i(B) > n - i(A) = \text{rank}(A) \).

Let \(c_1, \ldots, c_n \in F \) be such that \(\#\{i \in \{1, \ldots, n\} : c_i \neq 0\} \leq \min\{\text{rank}(A), \text{rank}(B)\} = \text{rank}(A) = n - i(A) \). Suppose without loss of generality, that \(c_1 = \cdots = c_{i(A)} = 0 \).

If \(\beta_{(n-d)-i(L_0)+1}(x) = x - \mu, \) with \(\mu \in F \setminus \{0\} \), then, as \(\beta_{(n-d)-i(L_0)+1}(x) = \beta_{n-i(B)+2}(x) \), we have \(\beta_{n-i(B)+1}(x) = \beta_{n-i(B)+2}(x) = x - \mu \). By \((1.2)\), we have

\[
\alpha_1(x) \ldots \alpha_{i(B)}(x) = x^{i(A)+i(B)-n}
\]

and then

\[
\alpha_1'(x) \ldots \alpha_{i(L_0)}'(x) = \frac{\alpha_1(x) \ldots \alpha_{i(B)}(x)}{x} = x^{i(A)+i(B)-n-1} = x^{i(K_0)+i(L_0)-(n-1)}.
\]
Note that $\text{rank}(L_0) \geq \text{rank}(K_0) = n - i(A)$ and at least one of the polynomials $\alpha'_{n-d} = \alpha_n$ and $\beta'_{n-d} = \beta_n$ has degree different from 2. According to the induction assumption, there exist $X_0, Y_0 \in F^{(n-d) \times (n-d)}$ such that $X_0^{-1}K_0X_0Y_0^{-1}L_0Y_0$ has eigenvalues c_{d+1}, \ldots, c_n. Consider the matrices $X = I_d \oplus X_0$ and $Y = I_d \oplus Y_0$. The matrix $X^{-1}A'XY^{-1}B'Y$ has eigenvalues c_1, \ldots, c_n.

Case 2. Suppose that $\lambda \neq 0$. By (1.1), we have

$$\beta_1(x) \ldots \beta_{i(A)}(x) = x^{i(A) + i(B) - 1}$$

which implies that

$$\beta_{n-i(B)+1}(x) = \cdots = \beta_{i(A)}(x) = x.$$

Note that $d = 1$ and $\text{rank}(B) = n - i(B) < i(A) \leq \text{rank}(A)$. Let $c_1, \ldots, c_n \in F$ be such that $\# \{i \in \{1, \ldots, n\} : c_i \neq 0\} \leq \min\{\text{rank}(A), \text{rank}(B)\} = \text{rank}(B) = n - i(B)$. Suppose without loss of generality, that $c_1 = \cdots = c_{i(B)} = 0$.

If $\deg(\alpha_{n-i(A)+2}) = 1$, then

$$\beta_1'(x) \ldots \beta_{i(K_0)}'(x) = \frac{\beta_1(x) \ldots \beta_{i(A)}(x)}{x} = x^{i(A) + i(B) - n - 1} = x^{i(K_0) + i(L_0) - (n-1)}.$$

Note that $\text{rank}(L_0) = \text{rank}(B) < \text{rank}(A) = \text{rank}(K_0) + 1$ and at least one of the polynomials $\alpha'_{n-1} = \alpha_n$ and $\beta'_{n-1} = \beta_n$ has degree different from 2. According to the induction assumption, there exist $X_0, Y_0 \in F^{(n-1) \times (n-1)}$ such that $X_0^{-1}K_0X_0Y_0^{-1}L_0Y_0$ has eigenvalues c_2, \ldots, c_n. Consider the matrices $X = [1] \oplus X_0$ and $Y = [1] \oplus Y_0$. The matrix $X^{-1}A'XY^{-1}B'Y$ has eigenvalues c_1, \ldots, c_n.

Lemma 9 If $n = 2 = \deg(\alpha_2) = \deg(\beta_2)$, then the pair (A, B) is weakly spectrally complete.

Proof Follows from Lemma 6.

Lemma 10 If $\deg(\alpha_n) = \deg(\beta_n) = 2$, $i(A) \leq i(B)$ and 0 is a primary eigenvalue of B, then the pair (A, B) is weakly spectrally complete.

Proof Let λ, ν be the roots of α_n and λ a primary eigenvalue of A. Let $0, \epsilon$ be the roots of β_n. The matrix A is similar to

$$A' = \lambda I_{2i(A) - n} \oplus \bigoplus_{i=1}^{n-i(A)} C,$$

where $C = \begin{bmatrix} \lambda & 1 \\ 0 & \nu \end{bmatrix}$,

and B is similar to

$$B' = 0_{2i(B) - n} \oplus \bigoplus_{i=1}^{n-i(B)} D,$$

where $D = \begin{bmatrix} 0 & 1 \\ 0 & \epsilon \end{bmatrix}$.

Note that $\text{rank}(B) = n - i(B) \leq n - i(A) \leq \text{rank}(A)$. Let $c_1, \ldots, c_n \in F$ be such that $\# \{i \in \{1, \ldots, n\} : c_i \neq 0\} \leq \min\{\text{rank}(A), \text{rank}(B)\}$. Suppose, without loss of generality, that $c_{n-i(B)+1} = \cdots = c_n = 0$. According to the previous lemma, for every $j \in \{1, \ldots, n - i(B)\}$, there exists $D_j \in F^{2 \times 2}$ similar to D such that CD_j has eigenvalues
$c_j > 0$. Then, B' is similar to $B'' = 0_{2i(B)−n} \oplus D_1 \oplus \cdots \oplus D_{n−i(B)}$ and $A'B''$ has eigenvalues c_1, \ldots, c_n. □

Proof of Theorem 1 The necessity follows from Lemmas 2 and 3. The sufficiency follows from Lemmas 8–10. □

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The research for this paper was done within the activities of Centro de Estruturas Lineares e Combinatórias da Universidade de Lisboa (CELC) and was partially supported by the Fundação para a Ciência e Tecnologia (Portugal).

References