Title: Laser surface patterning using a Michelson interferometer and femtosecond laser radiation

Author(s): Oliveira, V\textsuperscript{1,4}; Polushkin, NI\textsuperscript{2,3,4}; Conde, O\textsuperscript{3,4}; Vilar, R\textsuperscript{2,4}

Source: Optics and Laser Technology
Volume: 44 Issue: 7 Pages: 2072-2075 Published: Oct 2012

Abstract: We report on a simple method to obtain surface gratings using a Michelson interferometer and femtosecond laser radiation. In the optical setup used, two parallel laser beams are generated using a beam splitter and then focused using the same focusing lens. An interference pattern is created in the focal plane of the focusing lens, which can be used to pattern the surface of materials. The main advantage of this method is that the optical paths difference of the interfering beams is independent of the distance between the beams. As a result, the fringes period can be varied without a need for major realignment of the optical system and the time coincidence between the interfering beams can be easily monitored. The potential of the method was demonstrated by patterning surface gratings with different periods on titanium surfaces in air. (c) 2012 Elsevier Ltd. All rights reserved.

Document Type: Article
Language: English

Author Keywords: Laser Patterning; Femtosecond Laser; Michelson Interferometer

KeyWords Plus: Ultrashort-Pulse Laser; Ablation; Fabrication; Interference; Nanosecond; Titanium; Gratings; Silicon; Solids

Reprint Address: Oliveira, V. (reprint author), Inst Super Engn Lisboa, Av Conselheiro Emídio Navarro 1, P-1959007 Lisbon, Portugal

Addresses:
1. Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
2. Inst Super Tecn, P-1049001 Lisbon, Portugal
3. Univ Lisbon, Fac Ciencias, P-1749016 Lisbon, Portugal
4. Inst Ciencia & Engn Mat & Superficies, P-1049001 Lisbon, Portugal

E-mail Address: voliveira@adf.isel.pt

Publisher: Elsevier SCI LTD
Address Publisher: The Boulevard, Langford Lane, Killington, Oxford OX5 1GB, Oxon, England

ISI Document Delivery No: 960EW
ISSN: 0030-3992