Image quality and dose analysis for a PA chest X-ray: comparison between AEC mode acquisition and manual mode using the 10 kVp rule

Cláudia Reis (PT), João Gonçalves (PT), Corrie Klompmaker (NL), Ana Barbara (PT), Chloe Bloor (UK), Ryan Hegarty (UK), Tania Lagrange (CH), Noëlle Temming (NL), Mathilde Sønnesyn (NO), Henritte Røkeness (NO), Amandine Yamasathien (CH), Peter Hogg (UK)
Outline

• Introduction
 – Motivation
 – Research question & Objectives

• Methods

• Results & Discussion

• Conclusion
Introduction

• PA chest X-ray: an important radiograph (30-40% of all radiographs)

• The best compromise
 – Image quality
 – Patient dose (ALARP)

Motivation

• Analogue to digital systems
 – Adjustment of the technique

 • Parameters
 • Exposure index (Amount of exposure received by the image receptor; IgM for AGFA (1.96)
 • New guidelines (for technical aspects)

• Advantages of digital systems
 – Wider dynamic range
 – Postprocessing

• Clinical problems
 – Overexposure

Objectives

– Compare the image quality and dose of a PA chest X-ray using AEC mode and the 10 kVp rule

– Verify if there is a difference between the exposure index
METHODS
Image Acquisition

Methods

445 images

- SID (160-200)
- Focus (F & B)
- 10 kVp rule (80-110)
- AEC sensors
- Lesions

Introduction

- Motivation
- Research question & Objectives

Results & Discussion

Conclusion

Image Acquisition

68 images

- 40 AEC
- 20 Manual
- 8 Lesions
Image Acquisition

<table>
<thead>
<tr>
<th># of images</th>
<th>Parameters</th>
<th>SID</th>
<th>Focus</th>
<th>AEC/ manual values based on</th>
<th>lesions</th>
<th>kVp range</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 AEC, 4 manual</td>
<td></td>
<td>160</td>
<td>Fine</td>
<td>R</td>
<td>No</td>
<td>80-110</td>
</tr>
<tr>
<td>8 AEC, 4 manual</td>
<td></td>
<td>180</td>
<td>Fine</td>
<td>R</td>
<td>No</td>
<td>80-110</td>
</tr>
<tr>
<td>8 AEC, 4 manual</td>
<td></td>
<td>200</td>
<td>Fine</td>
<td>R</td>
<td>No</td>
<td>80-110</td>
</tr>
<tr>
<td>8 AEC, 4 manual</td>
<td></td>
<td>180</td>
<td>Fine</td>
<td>RML</td>
<td>No</td>
<td>80-110</td>
</tr>
<tr>
<td>8 AEC, 4 manual</td>
<td></td>
<td>180</td>
<td>Fine</td>
<td>RL</td>
<td>No</td>
<td>80-110</td>
</tr>
<tr>
<td>4 AEC, 4 manual</td>
<td></td>
<td>180</td>
<td>Fine</td>
<td>R</td>
<td>L=S</td>
<td>80-110</td>
</tr>
</tbody>
</table>
Effective Dose

• PCXMC software (Monte Carlo Simulation)
 – Effective dose based on ICRP 103
 • Most updated (new tissue factors)
 – Collected data
 • Dose Area Product (DAP)
 • kVp
 • Source Image Distance (SID)
 • Beam collimation
 • Patient size (phantom = average adult)
Image Quality

• 2 Alterative Forced Choice (2AFC)
• 5 blinded radiographers
• Likert point scale

Image Quality

Criteria for images without lesions

- Demonstration of vascular pattern in whole lung, particularly the peripheral vessels.
- Visually sharp demonstration of the borders of the heart.
- Visually sharp demonstration of the borders of the aorta.
- Visually sharp demonstration of the diaphragm.
- Visualisation of the retrocardiac lung and the mediastinum.
- Visualisation of the spine through the heart shadow.

Methods

Image Quality

Methods

Criteria for images with lesions

- Demonstration of vascular pattern in whole lung, particularly the peripheral vessels.
- Visually sharp demonstration of the borders of the heart.
- Visually sharp demonstration of the borders of the aorta.
- Visually sharp demonstration of the diaphragm.
- Visualisation of the retrocardiac lung and the mediastinum.
- Visualisation of the spine through the heart shadow.
- Contrast of nodule, against background.
- Brightness of nodule, against background.
- Sharpness of nodule edge.

RESULTS & DISCUSSION
AEC vs MANUAL

<table>
<thead>
<tr>
<th>kVp</th>
<th>10 kVp Rule</th>
<th>AEC Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mAs</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>Mean (%)</td>
<td>Mean (%)</td>
</tr>
<tr>
<td>80</td>
<td>6.89</td>
<td>0.028</td>
</tr>
<tr>
<td>90</td>
<td>4.42%</td>
<td>0.021</td>
</tr>
<tr>
<td>100</td>
<td>2.63 34%</td>
<td>0.013</td>
</tr>
<tr>
<td>110</td>
<td>1.97 25%</td>
<td>0.011</td>
</tr>
</tbody>
</table>

- Higher reduction in mAs using manual mode
- Higher reduction in time (s) using AEC mode
Introduction

Motivation

Research question & Objectives

Methods

Results & Discussion

Conclusion

Image Quality (global)

Effective Dose (global)

Effective Dose (global)

- Manual mode (better ED);
- AEC – R or RL – depending on AEC calibration and users’ preferences.

IgM (Exposure index – AGFA)

- SID did not influence the IgM variation \((p=0.931) \)
- \(\text{IgM} < \text{reference} - 1.96 \)

CONCLUSIONS
Conclusions

• AEC vs Manual
 – No significant differences between image quality and IgM
 – Using the 10 kVp on manual mode shows a lower effective dose
Further work

• More observers
 – Also clinical radiographers
• More images for lesion analysis
 – Only 8 images
 – Use of conspicuity software
• Perform this study using different types of equipment to confirm results
Thank you for your attention