Occupational co-exposure to several mycotoxins in the waste management setting

Susana Viegas1,2*, Luisa Veiga3*, Ana Almeida2, Elisabete Carolina2, Paula Figueiredo2, Carla Viegas1,4
1 Environmental and Health R & D – Lisbon School of Health Technology/Institute Polytechnic of Lisbon, Lisbon, Portugal
2 Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública, CHUP, Universidade Nova de Lisboa, Lisbon, Portugal
3 Lisbon School of Health Technology, Polytechnic Institute of Lisbon
4 Environmental Health Institute – Faculty of Medicine from Lisbon University, Lisbon, Portugal
*For further information please contact: susana.viegas@estrela.lisboa.pt

Introduction

Contrary to fungi, exposure to mycotoxins is not usually identified as a risk factor present in occupational settings. This is probably due to the inexistence of limits regarding concentration of airborne mycotoxins, and also due to the fact that these compounds are rarely monitored in occupational environments (Degen et al., 2011). Despite the optimal conditions for fungal growth and, consequently, for mycotoxins production in all the waste management chain, only a few articles were dedicated to study occupational exposure to mycotoxins in this occupational setting (Mayer et al., 2012; Viegas et al., 2014).

Aim of Study

A study was developed in Portugal aiming to assess occupational co-exposure to mycotoxins in the waste management setting.

Materials and Methods

First, it was performed an environmental fungal contamination study in the waste management company. Air samples of 250L were collected through an impaction method during a work day. Surface samples, taken at the same time, were collected by the swabbing method. All the collected samples were incubated at 27°C for 5 to 7 days.

Occupational exposure assessment to mycotoxins started by measuring Aflatoxin B1 (AFB1) in workers serum by enzyme-linked immunosorbent assay (ELISA). Forty-one workers from the waste company were enrolled. A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population.

Results and Discussion

All the workers showed detectable levels of AFB1 with values ranging from 2.5 ng/ml to 25.9 ng/ml with a median value of 9.9 ± 5.4 ng/ml. All of the controls showed values below the limit of detection (LOD=1 ng/ml).

Table 1. Aflatoxin B1 results (ng/ml)

<table>
<thead>
<tr>
<th></th>
<th>Female (median; range)</th>
<th>Male (median; range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers</td>
<td>9.7; 5.8 – 25.9</td>
<td>9.9; 2.5 – 22.7</td>
</tr>
<tr>
<td>(n=41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>(n=30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Besides A. flavus complex were found other toxigenic fungi: A. niger complex and A. fumigatus complex. Therefore, we have to consider that probably there is a co-exposure to several mycotoxins.

Considering this possibility of co-exposure, it must be ponder the additive effect reported in several studies due to the interaction between mycotoxins and the significant risk that represents to human health (Speijers & Speijers, 2004).

Conclusions and Future Actions

The results showed occupational exposure to AFB1 and the presence of fungal species that are known as producers of several mycotoxins. Besides aflatoxins co-exposure can occur to ochratoxins and fumonosins.

In the near future it will be measured ochratoxin A in the same serum samples.

References

This study would not have been possible to develop without the institutional support given by Lisbon School of Health Technology.