Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Patrícia Marques, Énia Silva, Cristina Camus, Eduardo Eusébio

La Coruña 25-27 March, 2015
Contents

• Introduction

• The Islands Electric System characterization

• The Islands LD Fleet evolution and characterization

• Methodology. Electric Vehicle penetration and Recharging Scenarios.

• Case Study

• Conclusions
Introduction

Madeira Island has about 55 km length and 24 km width, a total area of 740 km2 and Terceira has about 29 km length and 18 km width, a total area of 400 km2. This is suited for an electric vehicle (EV) use because the majority of daily trips are expected to be less than 100 km, so the range limitation problem almost no exists in this Island.
Introduction

Distribution of oil products’ consumption in 2013 in Madeira and Terceira among the final products

Madeira: 265,000 tons

- 50% Fueloil
- 28% Diesel
- 12% Gasoline
- 10% Other products

Terceira: 77,208 tons

- 54% Fueloil
- 28% Diesel
- 9% Gasoline
- 9% Other products
Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Introduction

Transportation
Electricity production

Fossil Fuels use
CO₂ emissions

Madeira

- Transports: 38%
- Others: 12%
- Electricity Gen.: 50%

Terceira

- Transports: 27%
- Others: 24%
- Electricity Gen.: 49%
The Islands Electric System characterization

Evolution of electricity generation in Madeira

2013 - 820GWh
The Islands Electric System characterization

Evolution of electricity generation in Terceira

[Graph showing produced energy in GWh from 1991 to 2013 with categories: Thermal, Wind, Hydric]

[Pie chart showing energy sources in 2013: Wind 15.3%, Thermal 83.3%, Hydric 1.3%]

2013 - 206 GWh
The Islands Electric System characterization

Madeira Island

- Typical spring load profile
- Typical winter load profile

Terceira Island

- Typical spring load profile
- Typical winter load profile

<table>
<thead>
<tr>
<th>Energy [MWh]</th>
<th>Time [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>0-2</td>
</tr>
<tr>
<td>25-50</td>
<td>2-4</td>
</tr>
<tr>
<td>50-75</td>
<td>4-6</td>
</tr>
<tr>
<td>75-100</td>
<td>6-8</td>
</tr>
<tr>
<td>100-125</td>
<td>8-10</td>
</tr>
<tr>
<td>125-150</td>
<td>10-12</td>
</tr>
<tr>
<td>150-175</td>
<td>12-14</td>
</tr>
<tr>
<td>175-200</td>
<td>14-16</td>
</tr>
<tr>
<td>200-225</td>
<td>16-18</td>
</tr>
<tr>
<td>225-250</td>
<td>18-20</td>
</tr>
<tr>
<td>250-275</td>
<td>20-22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy [MWh]</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>0-2</td>
</tr>
<tr>
<td>5-10</td>
<td>2-4</td>
</tr>
<tr>
<td>10-15</td>
<td>4-6</td>
</tr>
<tr>
<td>15-20</td>
<td>6-8</td>
</tr>
<tr>
<td>20-25</td>
<td>8-10</td>
</tr>
<tr>
<td>25-30</td>
<td>10-12</td>
</tr>
<tr>
<td>30-35</td>
<td>12-14</td>
</tr>
<tr>
<td>35-40</td>
<td>14-16</td>
</tr>
<tr>
<td>40-45</td>
<td>16-18</td>
</tr>
<tr>
<td>45-50</td>
<td>18-20</td>
</tr>
<tr>
<td>50-55</td>
<td>20-22</td>
</tr>
</tbody>
</table>

- Hydro
- MSW
- Wind
- Thermal
- Consumption

- Fuel
- Hydro
- Wind
- Load
The Islands Electric System characterization

Installed capacity and potential of renewable sources

Madeira:

<table>
<thead>
<tr>
<th>Source</th>
<th>Power [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>218.7</td>
</tr>
<tr>
<td>Hydro</td>
<td>50.9</td>
</tr>
<tr>
<td>Wind</td>
<td>45.1</td>
</tr>
<tr>
<td>PV</td>
<td>17.9</td>
</tr>
<tr>
<td>MSW</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Total 340.6

Terceira:

<table>
<thead>
<tr>
<th>Source</th>
<th>Power [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>61.2</td>
</tr>
<tr>
<td>Hydro</td>
<td>1.4</td>
</tr>
<tr>
<td>Wind</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Total 75.2

2030

<table>
<thead>
<tr>
<th>Source</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind (more)</td>
<td>60 MW</td>
</tr>
<tr>
<td>PV</td>
<td>20 MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geothermal</td>
<td>12 MW</td>
</tr>
<tr>
<td>Wind</td>
<td>16.2 MW</td>
</tr>
<tr>
<td>PV</td>
<td>4.2 MW</td>
</tr>
<tr>
<td>Biomass</td>
<td>3.1 MW</td>
</tr>
</tbody>
</table>
The Islands LD Fleet evolution and characterization

Evolution of the light duty fleet/1000 inhabitants in Portugal, Madeira and Terceira

LD fleet/1000 inhabitants

Years

LD fleet/Population x 1000

Portugal
Terceira
Madeira
Electric Vehicle penetration and Recharging Scenarios

Expected evolution for the LD fleet in Madeira in a BAU scenario

Best fit for Gompertz logistic function

\[VD(t) = c + (S - c) \cdot e^{-e^{b(t-a)}} \]

- **S=530**
- **a=1999**
- **b=0.11**
- **c= 0.0**
- **r^2=0.901**
Electric Vehicle penetration and Recharging Scenarios

Considering the % of EV sales increases till 50% - 17500 EVs in 2030 (14% LD Fleet)

Gaussian distribution for off-peak charging mean at 3h and std of 2h.
Electric Vehicle penetration and Recharging Scenarios

Expected evolution for the LD fleet in Terceira in a BAU scenario

Best fit for Gompertz logistic function

$$VD(t) = c + (S - c) \cdot e^{-e^{b(t-a)}}$$

Terceira
S=600
a=2002
b=0.065
c= 97.66
r^2=0.956
Electric Vehicle penetration and Recharging Scenarios

Considering the % of EV sales increases till 50% - 5140 EVs in 2030 (14% LD Fleet)

Profile of controlled off-peak charging with 14% EV in spring season
Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Case Studies

SIMULATION RESULTS:
Scenario of 1% increase of electricity demand and 60 MW of wind power and 20 MW of PV by 2030

Madeira

14% EV penetration

1012 GWh/yr

1047 GWh/yr

EVs +35 GWh/yr
Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Case Studies

SIMULATION RESULTS:
In Madeira Island it is expected that EV will be charged with fuel oil power plants although there are some benefits in the whole.

- **Fossil fuels use (primary energy in GWh/year):**
 - Madeira Island
 - 2013: 1120 GWh
 - 2030 (0 EV): 1225 GWh
 - 2030 (14% EV): 1288 GWh

- **Emissions in thousand tons of CO₂:**
 - 2013: 438 thousand tons
 - 2030 (0 EV): 478 thousand tons
 - 2030 (14% EV): 501 thousand tons
Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Case Studies

SIMULATION RESULTS:

Scenario of 14% EV penetration, 1% increase of electricity demand and 12 MW Geothermal power, 16.2 MW of Wind power, 4.2 MW PV and 3.1 MW in Biomass by 2030

Terceira

- 285 GWh/year
- Load - 276 GWh
- EV - 9 GWh

Load Management:

- 2,6% Hydro
- 0,6% Wind
- 10,8% Fuel
- 26,0% Geothermal
- 33,3% Thermal
- 7,6% Biomass
- 19,2% New Wind
- 4,2% PV
Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Case Studies

SIMULATION RESULTS:

Scenario of 14% EV penetration, 1% increase of electricity demand and 12 MW Geothermal power, 16.2 MW of Wind power, 4.2 MW PV and 3.1MW in Biomass by 2030

Terceira
Conclusions

Electrifying the car sector has the potential to

- Reduce CO₂ emissions,
- Use locally produced electricity increased by renewable sources
- Decrease energy unit costs and oil imports.

If there is not enough demand to fill the valley hours in order to incorporate more renewable production, there are only small advantages in the electric vehicle, as the oil products imports saved for the cars are replaced by fuel oil for the thermal power plants and the CO₂ emissions are transferred from the tail pipes to the power plants chimneys.
Renewable Energy in Islands. An Integrated Proposal for Electricity Generation and Transports

Conclusions

- The impact of EVs could be disastrous in a scenario of strong penetration if uncontrollable charging is allowed.
- The charging of EVs should be done during off-peak hours and if possible controlled by the electric utility as a dispatchable or scheduled load.
- The cost of EVs energy may be less than ¼ of ICEVs
- V2G and other systems of energy storage should also be considered in islands in order to increase renewable penetration and energy security of supply in the region.
ccamus@deea.isel.ipl.pt

Rua Conselheiro Emídio Navarro, 1

Tel.: 218 317 000
Electric Vehicle penetration and Recharging Scenarios

Considering the % of EV and HEV sales increases till 100% - 30200 EVs in 2030 (23% LD Fleet)