Title: Synthesis, characterization, electrochemical behavior and in vitro protein tyrosine kinase inhibitory activity of the cymene-halogenobenzohydroxamato [Ru(eta(6)-cymene)(bha)Cl] complexes

Author(s): Shang, Xianmei \(^{1,4}\); Silva, Telma F. S. \(^{1}\); Martins, Luisa M. D. R. S. \(^{1,9}\); Li, Qingshan \(^{4}\); Silva, M. Fatima C. Guedes da \(^{1,5}\); Kuznetsov, Maxim L. \(^{1}\); Pombeiro, Armando J. L. \(^{1}\)

Source: Journal of Organometallic Chemistry Volume: 730 Special Issue: SI Pages: 137-143
DOI: 10.1016/j.jorganchem.2012.12.013 Published: Apr 15 2013

Document Type: Article
Language: English

Abstract: The ruthenium(II)-cymene complexes [Ru(eta(6)-cymene)(bha)Cl] with substituted halogenobenzohydroxamato (bha) ligands (substituents = 4-F, 4-Cl, 4-Br, 2,4-F-2, 3,4-F-2, 2,5-F-2, 2,6-F-2) have been synthesized and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, cyclic voltammetry and controlled-potential electrolysis, and density functional theory (DFT) studies. The compositions of their frontier molecular orbitals (MOs) were established by DFT calculations, and the oxidation and reduction potentials are shown to follow the orders of the estimated vertical ionization potential and electron affinity, respectively. The electrochemical E-L Lever parameter is estimated for the first time for the various bha ligands, which can thus be ordered according to their electron-donor character. All complexes exhibit very strong protein tyrosine kinase (PTK) inhibitory activity, even much higher than that of genistein, the clinically used PTK inhibitory drug. The complex containing the 2,4-difluorobenzohydroxamato ligand is the most active one, and the dependences of the PTK activity of the complexes and of their redox potentials on the ring substituents are discussed. (C) 2012 Elsevier B.V. All rights reserved.

Author Keywords: Ruthenium(II) complexes; Synthesis; Protein tyrosine kinase inhibitor; Electrochemistry

KeyWords Plus: Ruthenium(II) arene complexes; Anticancer agents; Coordination chemistry; Platinum complexes; X-Ray; Ferrocene derivatives; Molecular-structure; Crystal-structures; Design strategies; Redox potentials

Reprint Address: Pombeiro, AJL (reprint author) - Univ Tecn Lisboa, Inst Super Tecn, Ctr Quim Estrutural, Complexo 1, Av Rovisco Pais, P-1049001 Lisbon, Portugal

Addresses:
[1] Univ Tecn Lisboa, Inst Super Tecn, Ctr Quim Estrutural, P-1049001 Lisbon, Portugal
[5] Univ Lusofona Humanidades & Tecnol, ULHT Lisbon, P-1749024 Lisbon, Portugal

E-mail Addresses: pombeiro@ist.utl.pt

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation for Science and Technology (FCT), Portugal</td>
<td>SFRH/BPD/44773/2008 PEst-OE/QUI/UI0100/2011</td>
</tr>
<tr>
<td>state 'Innovative Drugs Development' key and technology major projects of China</td>
<td>2009ZX09103-104</td>
</tr>
<tr>
<td>National Natural Science Foundation of China</td>
<td>81102311</td>
</tr>
<tr>
<td>FCT</td>
<td>SFRH/BD/48087/2008</td>
</tr>
</tbody>
</table>