B5B-433-20

TECHNICAL DATA

LED, 5 mm AlGaInP

B5B-433-20 is a AlGaInP LED mounted on a lead frame with a clear epoxy lens. On forward bias it emits a band of green light with a peak at 575 nm.

Specifications
- Structure: AlGaInP
- Peak Wavelength: typ. 575 nm
- Optical Output Power: typ. 4.5 cd
- Package: 5 mm clear epoxy

Absolute Maximum Ratings ($T_a=25^\circ$C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>120</td>
<td>mW</td>
</tr>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Pulse Forward Current</td>
<td>I_{FP}</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40</td>
<td>$^\circ$C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40</td>
<td>$^\circ$C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>T_{sol}</td>
<td>260</td>
<td>$^\circ$C</td>
</tr>
</tbody>
</table>

*1 1/10 duty cycle @ 1 KHz
*2 1.6mm from body, must be completed within 3 seconds

Electro-Optical Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F = 20$ mA</td>
<td>-</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>I_R</td>
<td>$V_R = 5$ V</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Luminous Intensity</td>
<td>I_V</td>
<td>$I_F = 20$ mA</td>
<td>3.0</td>
<td>4.5</td>
<td>-</td>
<td>cd</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>λ_p</td>
<td>$I_F = 20$ mA</td>
<td>-</td>
<td>575</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Dominant Wavelength</td>
<td>λ_D</td>
<td>$I_F = 20$ mA</td>
<td>-</td>
<td>572</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Half Width</td>
<td>$\Delta \lambda$</td>
<td>$I_F = 20$ mA</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Viewing Angle *</td>
<td>$2\theta_{1/2}$</td>
<td>$I_F = 20$ mA</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>deg</td>
</tr>
</tbody>
</table>

* Tolerance: -10 / +5 deg.

Notes
- Do not view directly into the emitting area of the LED during operation!
- The above specifications are for reference purpose only and subjected to change without prior notice.

ATTENTION
OBSERVE PRECAUTIONS FOR HANDLING
ELECTROSTATIC SENSITIVE DEVICES
Typical Performance Curves

- **Forward Current – Forward Voltage**
 - Graph showing Forward Current (I_f, mA) vs. Forward Voltage (V_f, V)
 - Ta = 25°C

- **Luminous Intensity – Forward Current**
 - Graph showing Relative Luminous Intensity vs. Forward Current (I_f, mA)
 - Ta = 25°C

- **Luminous Intensity – Ambient Temperature**
 - Graph showing Relative Luminous Intensity (I_f=20mA) vs. Ambient Temperature
 - Ta = 25°C

- **Max. Forward Current – Ambient Temperature**
 - Graph showing Forward Current (I_f, mA) vs. Ambient Temperature

- **Peak Wavelength**
 - Graph showing Relative Luminous Intensity (%) normalized at I_f=20mA vs. Wavelength (λ, nm)
 - Ta = 25°C

- **Radiation Diagram**
 - Graph showing Relative Luminous Intensity vs. Angle in Degrees
Precaution for Use

1. Cautions
 - DO NOT look directly into the emitted light or look through the optical system. To prevent inadequate exposure of the radiation, wear protective glasses.

2. Lead Forming
 - When forming leads, the leads should be bent at a point at least 3 mm from the base of the lead. DO NOT use the base of the leadframe as a fulcrum during lead forming.
 - Lead forming should be done before soldering.
 - DO NOT apply any bending stress to the base of the lead. The stress to the base may damage the LED’s characteristics or it may break the LEDs.
 - When mounted the LEDs onto the printed circuit board, the holes on the circuit board should be exactly aligned with the leads of LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the lead and it will degrade the LEDs.

3. Soldering Conditions
 - Solder the LEDs no closer than 3 mm from the base of the lead.
 - DO NOT apply any stress to the lead particularly when heat.
 - The LEDs must not be reposition after soldering.
 - After soldering the LEDs, the lead should be protected from mechanical shock or vibration until the LEDs return to room temperature.
 - When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
 - Cut the LED leads at room temperature. Cutting the leads at high temperature may cause the failure of the LEDs.
4. **Static Electricity**

- The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.

- All devices, equipment and machinery must be grounded properly. It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.