Title: Palaeomagnetic study of a subaerial volcanic ridge (Sao Jorge Island, Azores) for the past 1.3 Myr: evidence for the Cobb Mountain Subchron, volcano flank instability and tectonomagmatic implications

Author(s): Silva, P. F.1,2; Henry, B.3,4; Marques, F. O.2; Hildenbrand, A.5,6; Madureira, P.7,8; Meriaux, C. A.2; Kratinova, Z.2,9

Source: Geophysical Journal International

Volume: 188 Issue: 3 Pages: 959-978

DOI: 10.1111/j.1365-246X.2011.05320.x Published: Mar 2012

Document Type: Article

Language: English

Abstract: We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores ArchipelagoNorth Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3 degrees N, 160.7 degrees E, K= 33 and A95= 3.4 degrees) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 +/- 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNWSSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNWSSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNWSE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.

Author Keywords: Palaeomagnetic Secular Variation; Palaeomagnetism Applied to Tectonics; Palaeomagnetism Applied to Geologic Processes; Reversals: Process, Time Scale, Magnetostratigraphy; Rock and Mineral Magnetism; Atlantic Ocean

KeyWords Plus: Averaged Geomagnetic-Field; Mid-Atlantic Ridge; Isothermal Remanent Magnetization; Palma Canary-Islands; Triple Junction; Secular Variation; La-Palma; Paleosecular Variation; Acquisition Curves; French-Polynesia
Reprint Address: Silva, PF (reprint author), Univ Lisbon, ISEL DEC, P-1699 Lisbon, Portugal.

Addresses:
1. Univ Lisbon, ISEL DEC, P-1959007 Lisbon, Portugal
2. Univ Lisbon, IDL, P-1699 Lisbon, Portugal
3. IPGP, St Maur, France
4. CNRS, St Maur, France
5. Univ Paris 11, Lab IDES, UMR8148, F-91405 Orsay, France
6. CNRS, F-91405 Orsay, France
7. Univ Évora, Ctr Geofís Evora, Évora, Portugal
8. Univ Évora, Dept Geociencias, Évora, Portugal
9. Acad Sci Czech Republic, Inst Geophys, Prague, Czech Republic

E-mail Address: pmfsilva@fc.ul.pt

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCT (Portugal)</td>
<td>POCTI/CTE/48137/2002</td>
</tr>
<tr>
<td></td>
<td>PTDC/CTE-GIN/71838/2006</td>
</tr>
<tr>
<td></td>
<td>PTDC/CTE-GIX/108149/2008</td>
</tr>
<tr>
<td>Instituto Dom Luiz (IDL)</td>
<td></td>
</tr>
<tr>
<td>Centro de Geofísica de Évora</td>
<td></td>
</tr>
</tbody>
</table>

Publisher: Wiley-Blackwell

Publisher Address: Commerce Place, 350 Main St, Malden 02148, MA USA

ISSN: 0956-540X