Title: Neutrinos and the Matter-Antimatters Asymmetry in the Universe

Author(s): Felipe, Ricardo Gonzalez

Source: International Journal of Modern Physics E-Nuclear Physics
Volume: 20 Supplement: 1
Pages: 56-64 DOI:10.1142/S0218301311040074 Published: Dec 2011

Abstract: The discovery of neutrino oscillations provides a solid evidence for nonzero neutrino masses and leptonic mixing. The fact that neutrino masses are so tiny constitutes a puzzling problem in particle physics. From the theoretical viewpoint, the smallness of neutrino masses can be elegantly explained through the seesaw mechanism. Another challenging issue for particle physics and cosmology is the explanation of the matter-antimatter asymmetry observed in Nature. Among the viable mechanisms, leptogenesis is a simple and well-motivated framework. In this paper we briefly review these aspects, making emphasis on the possibility of linking neutrino physics to the cosmological bary asymmetry originated from leptogenesis.

Document Type: Article
Language: English

Author Keywords: Neutrino Oscillations; Cosmological Baryon Asymmetry; Seesaw Mechanism

KeyWords Plus: CP Violation; Leptogenesis; Bridge

Reprint Address: Felipe, RG (reprint author), Inst Super Engn Lisboa, Rua Conselheiro Emídio Navarro, P-1959007 Lisbon, Portugal.

Addresses:
1. Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
2. Univ Tecn Lisboa, Inst Super Tecn, Ctr Fis Teor Partículas, P-1049001 Lisbon, Portugal

E-mail Address: gonzalez@cftp.ist.utl.pt

Publisher: World Scientific Publ
Address Publisher: Singapore 596224, Singapore

IDS Number: 872PD
ISSN: 0218-3013