Title: Magnetic Field and Temperature Effects on Strangelets

Author(s): Lopez Fune, Ernesto1; Perez Martinez, Aurora1; Manreza Paret, Daryel1; Felipe, Ricardo Gonzalez2,3

Source: International Journal of Modern Physics E-Nuclear Physics
Volume: 20 Supplement: 2
Pages: 42-49 DOI:10.1142/S0218301311040578 Published: Dec 2011

Abstract: The main properties of magnetized strangelets, namely, their energy per baryon, radius and electric charge, are studied in the unpaired strange quark matter phase. Temperature effects are taken into account in order to study their stability compared to the (56)Fe isotope and non-magnetized strangelets within the framework of the MIT bag model. It is concluded that the presence of a magnetic field tends to stabilize more the strangelets, even when temperature is considered. We find that the electric charge is modified in the presence of the magnetic field, leading to higher charge values for magnetized strangelets, when compared to the non-magnetized case.

Document Type: Article
Language: English

Author Keywords: Strangelets; Strange Quark Matter; Magnetic Field

KeyWords Plus: Finite-Temperature; Matter; Stars

Reprint Address: Fune, EL (reprint author), Inst Cibernet Matemat & Fis ICIMAF, Calle E Esq 15,309 Vedado, Havana 10400, Cuba.

Addresses:
1. Inst Cibernet Matemat & Fis ICIMAF, Havana 10400, Cuba
2. \textbf{Inst Super Engn Lisboa, P-1957007 Lisbon}, Portugal
3. Inst Super Tecn, Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal

E-mail Address: elopezf@icimaf.cu; aurora@icimaf.cu; dmanreza@fisica.uh.cu; gonzalez@cftp.ist.utl.pt

Publisher: World Scientific Publ
Address Publisher: Singapore I 596224, Singapore

IDS Number: 876GH
ISSN: 0218-3013