Title: Compact Stars and Magnetized CFL Matter

Author(s): Perez Martinez, Aurora¹; Felipe, Ricardo Gonzalez²,³; Manreza Paret, Daryel⁴

Source: International Journal of Modern Physics E-Nuclear Physics
Volume: 20 Supplement: 2 Pages: 84-92 DOI:10.1142/S0218301311040645 Published: Dec 2011

Abstract: The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.

Document Type: Article
Language: English

Author Keywords: MIT Bag Model; Strong Magnetic Field; Neutron Stars

KeyWords Plus: Color-Flavor Locking; High-Density QCD; Quark Matter; Symmetry-Breaking; Neutron-Star; Superconductivity; Pulsar; Field I; Gap

Reprint Address: Martinez, AP (reprint author), Inst Cibernet Matemat & Fis ICIMAF, Calle E Esq 15,309 Vedado, Havana 10400, Cuba.

Addresses:
1. Inst Cibernet Matemat & Fis ICIMAF, Havana 10400, Cuba
2. Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
3. Univ Tecn Lisboa, Inst Super Tecn, Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal
4. Univ La Habana, Fac Fis, Havana 10400, Cuba

E-mail Address: aurora@icimaf.cu; gonzalez@cftp.ist.utl.pt; dmanreza@fisica.uh.cu

Publisher: World Scientific Publ
Address Publisher: Singapore 596224, Singapore

IDS Number: 876GH
ISSN: 0218-3013