Journal of Signal Processing Systems (2021) 93:531-544
https://doi.org/10.1007/511265-020-01606-2

l‘)

Check for
updates

Efficient Design of Pruned Convolutional Neural Networks on FPGA
Mario Véstias’

Received: 21 April 2020 / Revised: 21 April 2020 / Accepted: 8 October 2020 / Published online: 14 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Convolutional Neural Networks (CNNs) have improved several computer vision applications, like object detection and
classification, when compared to other machine learning algorithms. Running these models in edge computing devices close
to data sources is attracting the attention of the community since it avoids high-latency data communication of private data for
cloud processing and permits real-time decisions turning these systems into smart embedded devices. Running these models
is computationally very demanding and requires a large amount of memory, which are scarce in edge devices compared to
a cloud center. In this paper, we proposed an architecture for the inference of pruned convolutional neural networks in any
density FPGAs. A configurable block pruning method is proposed together with an architecture that supports the efficient
execution of pruned networks. Also, pruning and batching are studied together to determine how they influence each other.
With the proposed architecture, we run the inference of a CNN with an average performance of 322 GOPs for 8-bit data in
a XC7Z020 FPGA. The proposed architecture running AlexNet processes 240 images/s in a ZYNQ7020 and 775 images/s

in a ZYNQ?7045 with only 1.2% accuracy degradation.

Keywords Deep learning - Convolutional neural network - FPGA - Block pruning - Edge computing

1 Introduction

Deep neural networks (DNN) have shown very promising
achievements in computer vision applications, like object
detection and classification [1]. The convolutional neural
network (CNN) is a type of DNN used to classify images
and one of the most researched and deployed deep neural
network. Through the identification of correlations among
pixels a CNN is able to classify the object present in an
image as belonging to a pre-determined class.

CNNss differ from the other DNN models since they use
a particular class of layers known as convolutional. These
layers apply a set of 3D convolutions between 3D kernels of
weights and the maps of a previous layer to produce a set of
output maps for the next layer. A sequence of these layers
identifies features of the image whose complexity increases
with the depth of the network. In the final layers of a CNN
all features are associated to class with a certain probability.

One of the first CNNs was LeNet [2] with a total of
60K weights distributed by five layers. The network was

b4 Mdrio Véstias
mvestias @deetc.isel.ipl.pt

1" INESC-ID, Instituto Superior de Engenharia de Lisboa,
Instituto Politécnico de Lisboa, Lisbon, Portugal

applied for digit classification with small images. AlexNet
[3], a deeper and more complex CNN, was presented in
the ImageNet Challenge for image classification, with eight
layers with a total of 61M weights and 724 MAC (Multiply-
ACcumulate) operations to process images of size 224 x
224 x 3. With a Top-5 error rate around 15 % it attracted
the attention to deep neural networks as a very promising
machine learning method. Other models have followed with
better accuracies. VGG-16 [4] with 16 layers, 2.2x more
weights than AlexNet and 15.5 GMAC (Giga Multiply-
Accumulate) operations improved the Top-5 error to around
7%. GoogleNet [5] introduced the inception module, a new
type of layer, 1 x 1 convolutions and other optimizations
that lead to improvements in the accuracy for image clas-
sification. The number of layers of CNNs kept increasing
as a way to improve accuracy. ResNet [6], the first CNN
exceeding human level accuracy, has 152 layers.

Running these machine learning models on the edge
close to data sources is essential for the future of big data
processing since it avoids a high-latency communication
of private data for cloud processing and permits real-time
decisions on the edge. However, a common feature of
CNN models is the high number of weights and operations.
Therefore, running algorithms that are quite demanding in
terms of computing and storage requirements in devices
where these resources are scarce is a challenging task [7].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-020-01606-2&domain=pdf
http://orcid.org/0000-0001-8556-4507
mailto: mvestias@deetc.isel.ipl.pt

532

J Sign Process Syst (2021) 93:531-544

Two main research directions are being followed for the
deployment of CNNs in edge computing platforms: model
optimization and new computing architectures and plat-
forms. Model optimization includes all methods used to
reduce the number of operations and weights of the network.
This will reduce proportionally the computational complex-
ity and the storage requirements of the target computing
platform. On the other side, dedicated architectures improve
the performance, the energy and the cost of the comput-
ing platform. Most of previous proposals in either of these
dimensions do not follow a collaborative design approach.
Model optimizations do not consider the target platform and
computing architectures are designed for specific models.
An integrated design approach where both the model and
the architecture are designed in common is more effective
and produces better results.

In this paper, we propose a hardware-oriented pruning
of convolutional neural networks. Pruning is a well-known
method for model optimization that prunes connections
between layers to reduce the number of operations and
weights. The method by itself is quite efficient but intro-
duces sparsity in the matrices of weights, which reduces the
computational efficiency of the regular pipelined structures
of computing datapaths. To overcome the sparsity problem
caused by pruning, a block pruning technique adapted to
the pipelined datapath of the architecture is proposed in
this paper together with a dedicated architecture with sup-
port for pruned networks. The architecture also supports
image batch as a complement method of pruning. The cor-
rect integration of both methods allows the implementation
of efficient architectures with high image throughput and
high network accuracy.

The proposed architecture extends a high performance
architecture for CNN inference proposed in [8] with block
pruning. The following has been considered for the design
of the proposed architecture:

— A new coarser grained pruning method of CNNs where
weights are removed in groups;

— A deep learning flow based on Caffe [9] and Ristretto
[10] to optimize networks with block pruning and data
quantization;

— Extension of a baseline architecture with configurable
block pruning and batch.

The paper is organized as follows. Section 2 describes the
state of art on FPGA implementations of CNNs and opti-
mization methods based on pruning. Section 3 explains the
fundamentals of convolutional neural networks. Section 4
describes the baseline architecture. Section 5 describes
the block pruning method and the flow used to explore
block pruning and quantization. Section 6 describes the
proposed architecture with support for both pruning and
batch. Section 7 reports the results on inference accuracy

@ Springer

and area/performance of the proposed architecture running
AlexNet on two different SoC (System on Chip) FPGAs
(ZYNQ7020 and ZYNQ?7045). Section 8§ concludes the paper.

2 Related Work

Computing platforms for deep learning on edge cannot
rely on high-performance devices since they either have
high energy consumption or low power efficiency and are
relatively expensive [11]. Embedded processors are used
in many low cost devices but achieve only a few dozen
GFLOPs (Giga FLoating-point Operations Per second) with
low power efficiency, insufficient for real or almost real-
time processing of CNNs. Embedded GPUs (Graphics
Processing Units) offer thousands of GFLOPs at accept-
able power but usually higher than that available in a low
energy embedded platform. Dedicated hardware solutions
can achieve the best performance and energy efficiency as
long as the power and cost are acceptable for a low cost
embedded device. Dedicated hardware solutions with appli-
cation specific integrated circuits (ASICs) are the most effi-
cient. Edge TPU from Google [12] is a processor for embed-
ded inference applications. It has a peak performance of 4
TOPS and consumes 0.5 TOPS/W. The high performance
and high energy efficiency is the result of a dedicated chip
for inference. However, the performance efficiency (mea-
sured performance over peak performance) greatly depends
on the network. For example, the inference of an image
(224 x 224) with VGG16, MobileNetvl and SqueezeNet
takes 343, 2.4 and 2 ms [13], respectively. This corresponds
to a performance efficiency of less than 2.3%, 2.6% and
9%, respectively. So, the performance efficiency is low and
variable with the network model. The problem is that ASIC-
based devices are very limited in terms of configurability
and thus unable to adapt the processing datapath to each par-
ticular network and model optimizations. Reconfigurable
computing is an alternative to ASIC solutions providing
configurability and high performance. A few authors have
proposed the implementation of CNN on coarse-grained
arrays [14], while most of the reconfigurable computing
proposals for CNNs target FPGAs (Field Programmable
Gate Arrays).

FPGAs permit the design of dedicated hardware accel-
erators for each specific neural network model. FPGAs are
less efficient but very hardware flexible and can be tai-
lored for each particular neural network. FPGAs run CNN
inference with high performance efficiency, because they
can be reconfigured to best implement each different CNN.
Depending on the FPGA family, hundreds or even thou-
sands of sustained GOPs (Giga Operations per second)
were already obtained in the execution of a CNN infer-
ence. FPGA implementations of CNNs started with small

J Sign Process Syst (2021) 93:531-544

533

networks [15, 16] and/or considering only convolutional
layers [17] and now full CNN implementations [18] and
automatic tools for the generation of CNN accelerators [19]
are available.

FPGA implementations with dedicated accelerators for
the whole CNN model were proposed in [20, 21]. The
former uses an architecture similar to that proposed in [17].
Any of these architectures can run any convolutional layer
with different features, including the size of convolution
windows that may vary for different layers. To ensure all
this flexibility the performance efficiency of the architecture
varies with the window sizes of convolutions since a fixed
structure is used to run all different convolution sizes. Some
authors proposed solutions to eliminate this variation in
efficiency. Suda et al. [21] rearrange the input maps of the
layer to be executed as matrix multiplications. Convolutions
are executed with the same efficiency independently of the
window size. However, it has a large overhead associated
with the memory accesses and execution times necessary
to rearrange the input maps. This overhead was partially
eliminated in [22] that also uses an accelerator for matrix
multiplication and dedicated units to convert the inputs
maps into a matrix.

Instead of using the same hardware block to execute
different layers, the authors in [23] proposed an archi-
tecture with a dedicated hardware module for each layer
in a pipeline datapath. The approach removes efficiencies
caused by different window sizes but requires other tech-
niques such as fused layers [24] to account for the extra
memory required to store intermediate maps and weights.
The solution is not appropriate for models with a large num-
ber layers. To overcome this limitation, a mixed approach
was proposed in [25], where the architecture has several
execution modules, each running a subset of the layers.

To reduce the complexity of the accelerators, several
optimization techniques have been proposed. One of the
most used simplification is data size reduction where
smaller and simpler representations are used for activations
and weights [26]. In [27], an analysis of several CNNs have
shown that data represented with 8 bit fixed-point preserves
the accuracy close to that obtained with data represented
with 32-bit floating-point. A deeper optimization allows
different fixed-point scales and bitwidths for different layers
[28, 29]. Data quantization can be taken to the limit with
some or all data represented in binary. In general, there is
a trade-off between the network size and precision. In [30]
this trade off was studied and a binarized neural network
requires 2 to 11 times more operations and weights than a
CNN with 8-bit fixed-point weights to achieve a comparable
accuracy on a small network.

Another class of model optimizations is known as data
reduction, a set of techniques to reduce the number of
weights and/or activations of the network model in order to

reduce the necessary memory and the number of operations
to execute the model. Data reduction uses pruning to reduce
the number of weights and data compression to additionally
reduce the size of memory storage. In [31] deep neural
networks are pruned and compressed with Huffman coding.
Applied to fully connected layers of AlexNet permitted a
91% reduction in the number of weights with a negligible
effect over the accuracy. Pruning introduces sparsity so in
[32] the pruning is adapted to the underlying hardware
arithmetic unit. The method was tested with different
processors, including a microcontroller, a general-purpose
processor and a GPU. Considering a GPU, the pruning
method improved the performance by 25% and reduced the
model size by 53%.

Pruning applied to fully connected layers is very efficient
since it reduces considerably the number of weigths and
the number of operations in proportion. In convolutional
layers, weight pruning is less efficient. Instead of pruning
weights some approaches rely on the fact that the ReLU
function reduces many output activations to zero. So
instead of weight pruning, they implicitly prune zero valued
activations while running the layers. The method permits
to reduce the number of operations if the multiplication by
zero is skipped. A zero-skiping method was proposed in
[33] and implemented in ASIC. The same work additionally
considers explicit pruning by dynamic zeroing activation
outputs whenever the value is close to zero within a
threshold. The problem of the proposed architecture is that
it requires large on-chip memory, which is not adequate
for low density devices, and only considers optimizations
in convolutional layers. In [34] the focus is over fully
connected weights skipping both weights and activations
that are zero while [35] can skip both weights and
activations only in convolutional layers.

In [36], an architecture implemented in FPGA was
proposed that dynamically skips computations with zeros
similar to what is done in [33]. The authors kept a dense
format to store the matrix still requiring that all weights be
loaded from memory. The NullHop architecture proposed in
[37] also exploits the sparsity of convolutional feature maps,
consequence of zero activations generated by the ReLU
activation function. The architecture only takes advantage
of zero activations to reduce memory size using a sparse
matrix compression scheme. The number of operations is
kept the same since it does not take advantage of zero
activations to avoid the execution of multiplications. In [38]
and [39] the proposed method skips zeros present in weights
instead of zeros present in the feature maps. The work in
[39] considers one weight of each kernel at a time. In [40]
both pruning and zero skipping are used to improve the
performance of an accelerator for low density FPGAs.

The migration of deep learning to the edge took some
authors to move their focus to low density FPGAs [41]. In

@ Springer

534

J Sign Process Syst (2021) 93:531-544

[42], small CNNs were implemented in a small ZYNQ7020
with an average performance of 13 GOPs with weights
represented as 16 bit fixed-point data. In [43] the authors
proposed an architecture to run large CNN models, such
as VGG16, in ZYNQ7020 with data represented with 8
bits. The proposal considers a parameterizable hardware
module that is run-time reconfigured to run different layers.
Data in layers are quantized with the best fixed-point scale
and bit width, showing that 8-bits are enough for state-of-
the-art networks. The architecture achieves a performance
of 84 GOPs. A fully pipelined FPGA accelerator for
CNNs with data represented with 16-bit in fixed-point
format and a layer-fused technique was proposed in [44]
achieving 80 GOPS in a ZYNQ7020 FPGA. A very efficient
accelerator for convolutional neural networks was proposed
in [45]. The solution achieves 385 GOPs running large
CNNs. In [46] pruning of fully connected layers is used to
design an efficient accelerator for the inference of CNNs
in the small ZYNQ7020 SoC FPGA. The architecture
proposed in [47] is able to skip both input feature maps
zeros and zero weights that are present in both convolutional
and fully connected kernels. The solution requires a data
dispatcher module for each processing module and large
on-chip memory bandwidth local to each core to search
for non-zero weights and activations, reducing hardware
efficiency.

The architecture proposed in this paper efficiently inte-
grates fixed-point quantization, pruning and batch in FPGA.
The trade off between accuracy, area and performance is
determined with an integrated design of both model opti-
mization with pruning and hardware datapath.

3 Convolutional Neural Network

A convolutional neural network is a type of deep neural
network used for image classification and object recog-
nition [48]. What differentiates a CNN from the other
deep learning models is the utilization of convolutional
layers. The convolutional layer considers the spatial corre-
lation between neighbor neurons to establish dependencies
between them, that is, the output of a neuron is the result of
the convolution between a small window of weights and the
associated weights.

A convolutional layer receives several input feature maps
(IFM) from the previous layer and generates output feature
maps (OFM) to the next layer. There is a window of
weights for each input feature map. A stack of windows of
weights forms one 3D kernel. In a convolutional layer, a 3D
kernel slides over the 3D block of IFMs and produces one
OFM. Several 3D kernels are used in each convolutional
layer, each extracting different features from the IFMs. The

@ Springer

number of output feature maps of each layer is therefore the
same as the number of kernels at that layer. Convolutional
layers are computationally very demanding since the same
kernel has to be applied throughout the whole block of
input feature maps and each layer considers many different
kernels.

A CNN has several convolutional layers and each con-
volutional layer may be followed by a pooling layer that
determines the average or max of a window of neurons. This
layer reduces the complexity of the output feature maps and
achieves translation invariance and reduce over-fitting. The
last layers of a CNN are the fully connected (FC) or dense
layers interconnecting all neurons of previous layers so that
complex features extracted by the convolutional layers are
globally correlated. In each fully connected layer there are
also several kernels. However, in dense layers these kernels
are only applied once to the input map. Consequently, dense
layers are not computationally intensive since each kernel
is only used once. Instead the bottleneck of dense layers is
the large number of weights to be transferred from external
memory.

CNNs having these three types of layers are known as
regular. Examples of regular networks include AlexNet and
VGG16. Some proposals consider other types of layers,
like combinations of convolutional layers, in their CNNs.
Networks like GoogleNet [5] and ResNet [6] are referred
to as irregular networks since they contain composite layers
different from the three above.

Regular networks, like AlexNet and VGG16, have most
of the weights (90%) concentrated in the fully connected
layers. In these networks, pruning of fully connected layers
is more effective then in convolutional layers. The method
reduces the required memory to store weights and allows
zero skipping to reduce the required computing resources.
The problem of pruning is the introduction of sparsity in the
matrix of weights. The block pruning method proposed in
this paper reduces the pruning granularity to allow a more
suitable hardware implementation of a parallel datapath in
order to avoid the need for complex data dispatch units
requiring large memory bandwidth.

4 Baseline Architecture Overview

The architecture proposed in this paper modifies a baseline
state of the art architecture to support block pruning. This
baseline architecture is a follow-up of the work presented in
[8] and is described in this section.

Knowing that each type of layer has different character-
istics, the baseline architecture has one hardware module
for convolutional layers and another for dense layers (see
Figure 1).

J Sign Process Syst (2021) 93:531-544

535

FPGA
ARM [Controller
. b P
R Config. Weight Config. Weight
A Control Memory Control Memory
M Feature
Map PN Batch
Memory | Conv PE Memory [FC PE
Cluster Cluster
Address Address
generators generators

Convolutional Module Fully connected Module

Figure 1 Block diagram of the baseline architecture.

This hardware partition allows different optimization
techniques to be applied to convolutional and fully con-
nected layers. In the proposal of this paper, the pruning
technique is only applied to fully connected layers.

Each module is independent of each other and executes
one layer at a time. Before running a layer, the module is
configured with the specific features of the layer, namely the
number of kernels, the size of kernels, addresses of feature
maps and kernels in the on-chip memory, the optional
execution of pooling after a convolutional layer and the
fixed-point format that can be different for different layers.
The convolutions and inner products of dense layers read
the input feature maps from on-chip memory. If the on-
chip memory is not enough to store the initial image or the
input feature maps, these are divided and processed in parts.
The output feature maps are stored in external memory and
then reloaded for the next layer. This memory hierarchy
permits the execution of large CNNs in FPGAs even when
the on-chip memory is insufficient to store the whole maps.

Convolutional and fully connected modules consist of a
matrix of processing elements (PE) with local memory to
store kernels of weights. Pooling and activation functions
run in a central module shared by all processing elements
(see Figure 2).

The execution of a CNN in the baseline architecture
works as follows:

1. Each module is configured according to the layer fea-
tures;

2. The image or the input feature maps are loaded to the
on-chip memory (Feature Map Memory - FMM);

3. Weigths are loaded into the local memories of the PE
cluster;

4. PE clusters execute the convolutions and dot-products;

5. The results are sent to the pooling and activation mod-
ule;

6. The new OFMs are stored in external memory;

7. Go to step 3 if more kernels need to be loaded;

8. The whole process repeats for each layer.

External memory accesses are done by direct memory
access (DMA) blocks that read feature maps and the kernels
from external memory and write the feature maps back to
external memory.

The PE cluster for convolutional layers explores several
forms of parallelism:

1. Inter-output parallelism: Output feature maps are
independent and so are calculated in parallel. Different
cores of the cluster operating over the same activations
with different kernels contribute to different output
maps in parallel (line of cores);

2. Intra-output parallelism: Activations of an output
feature map are independent and can be calculated in
parallel. Different cores of the cluster operating over
different activations with the same kernel contribute
to different activations of an output map in parallel
(columns of cores);

3. Kernel parallelism: The inner product of a single kernel
can be calculated in parallel. Each core has several
multiply-accumulate (MAC) units that calculate the
kernel convolution in parallel. The number of parallel
MAC is configurable and determines the data port size
of memories.

The baseline architecture calculates convolutions inde-
pendently of the convolution window size by considering
3D convolutions with activations and weights as long vec-
tors, as explained in [8]. Each activation of an output feature
is obtained from the dot product between a 3D kernel x; x
Yk X 2 and the correspondent activations of the IFMs of size
Xp X yp X Zp, where z, is the number of IFMs. Formally,
the dot product to calculate each step of the convolution is
given by:

ye—1 xpze—1

DPeony = Z Z Wi e+ X AstartAddr+ix,, p+i (D
i=0 j=0

where startAddr is the address of the first activation of
the block of the input feature map being convolved. This
operation is used to convolve a kernel with the set of input
feature maps sliding the 3D kernel along the feature maps. If
a layer is followed by a pooling layer, the output activations
of the pooling window are pooled and only the pooling
result is stored in the FMM. The advantage of the proposed
method is that it is independent of the size of the kernels and
of the size of the convolution window.

For example, considering a kernel of size 3 x3x 128, each
output neuron is calculated as the inner product of the kernel
with a block of 3 x 3 x 128 activations. The 3D kernel slides
over the whole input map spanning the x, x y,, space. When
there is a stride higher than one, the 3D kernel slides over the
input map stepping over some input activations according to

@ Springer

536

J Sign Process Syst (2021) 93:531-544

Figure 2 Architecture of the PE
cluster for convolutional layers. Wmem Wmem Wmem | ------ Wmem
FMM,
! v v ¥ ¥
Shift Corego Coreg; Coreg, Coreom
el L
FMM;,
" ¥ ¥ ¥ ¥
Shift Coreqg Coreq4 Coreqz Coreqm
s o ! >
FMM
! v v v ¥
Shift Coreyo Corexq Corey, Corexm
el T T L

the stride size. For example, a stride of two means that the
slide shifts by two, reducing the output map to half the size
of the input map. The algorithm also includes the optional
pooling step. In this case, the output neuron is generated
only after determining all neurons of the pooling window,
that is, the algorithm sequentially determines all neurons of
the pooling window so that the pooling layer can be merged
with the convolutional layer.

The PE cluster for dense layers also explores intra-output
and kernel parallelism, but inter-output parallelism does not
apply to dense layers. However, the baseline architecture
supports feature map batch, in which several maps from
the convolutional layers are batched before running the first
dense layer. When batch is considered, the architecture also
explores inter-output parallelism since multiple output maps
are generated in parallel.

The fully connected cluster consists of a matrix of
cores with a structure identical to the PE cluster for
convolutions. Each line of cores receives the activations of
an image batched in the batch memory. Compared to the
convolutional module, there is a major simplification in the
address generators since, insteads of an image convolution,
there is a single dot product between the whole batched
image and the kernel. Multiple dot products between a
batched image and different kernels are possible by using
multiple cores in a line of the cluster. This number is
limited by the available memory bandwidth and is in general
much lower than in the PE cluster for convolutions. This
architectural difference between the two clusters of PE
is the main reason for having independent modules for
convolutional and fully connected layers, improving the
hardware efficiency.

@ Springer

5 Block Pruning of Dense Layers

Pruning introduces sparsity in the kernels. Sparse kernels
of a layer have pruned weights in different indices. This
complicates the exploration of kernel and intra-output
parallelism since several activations of the input map have
to be accessed at sparse addresses at the same time.
This requires multi-port memories or memory content
replication. Sparsity also introduces an overhead associated
with the index information of the sparse vector of weights.

To improve the hardware implementation and the
performance of pruned networks we introduce the block
pruning method which performs a coarse pruning of blocks
of weights. The method reduces the index overhead and the
required number of memory ports. The technique permits to
prune blocks of weights instead of just single weights (see
example in Figure 3).

Blocks of size 4
[3lol7[s]1[4[s[4)e]10[2[2]4f6]1]7]
L Y A Y \/ Y A Y J
Average 6 3! 5) 3,75

Block pruning
75% |-3] 9| 7| 5]ofo]o]ofo]ofo|ofo]o|o]o]

50% [-3] 9| 7[5]ofo]o]o]e|10]2][-2]o]ofo]o]

25% |-3] 9| 7[5]ofo]o]o]e[10]2]2]1]6]1]7]

Figure 3 Pruning method for blocks of four weights.

J Sign Process Syst (2021) 93:531-544

537

The proposed method determines the average magnitude
of a block of weights, sort them and then the blocks with the
lowest average magnitude are pruned limited by a pruned
percentage. The remaining blocks are stored as a sparse
vector where each position contains the block of weights
and the index of the next block.

A framework to explore the block pruning of weights in
fully connected weights followed by data quantization was
developed based on Caffe [9] as the main framework and
Ristretto for data quantization.

Pruning can be implemented with different metrics and
methods to reduce the number of weights. In this work
we have considered the weights magnitude. A percentage
of weights whose magnitude is closer to zero is iteratively
removed according to the flow in Figure 4.

In the first step we train the network or start with a pre-
trained network. After training, consecutive weights of the
kernel are grouped in blocks of a predetermined size and
the average of each block is determined. Then, starts an
iterative pruning of a percentage p of the blocks with the
lowest average. While the difference between the original
accuracy and the accuracy of the pruned network is bellow a
threshold, the algorithm iteratively increases the percentage
of pruning. When no more pruning is allowed, a datawidth
reduction step follows (the baseline architecture considers
8 bits fixed-point representations). After fine tuning the
network, the algorithm outputs the kernels.

Each sparse kernel includes the weights and the indexes
of the positions of the weights inside the kernel. Each index

Train CNN (accuracy = a0)

v

Determine average of blocks

i
<

A\ 4
Remove percentage (p) of
blocks with lowest average

| p=p+Ap |
Determine network accuracy A

(accuracy = at)

<>

no

Datawidth Reduction

v

Fine Tune

v

Done

Figure 4 Network pruning flow.

has four bits and represents offsets relative to the previous

index. The kernel is organized as illustrated in Figure 5.
The number of indexes depends on the size of the pruning

blocks as W x pruning. For example, a kernel

ze

with 8192 weights pruned by 90% with blocks of eight

weights requires % X (1 — 0.9) indexes. The smaller the

blocks and the pruning percentage the more indexes are

needed.

6 Proposed Architecture with Support
for Block Pruning

The baseline architecture was extended to support block
pruned dense layers. The architecture is statically config-
urable with a block size, that can be 1, 2, 4 or 8. The
convolutional module is the same as the baseline architec-
ture, but the fully connected module had to be modified (see
Figure 6).

The data width of the weight memories is 64 bits,
permitting to read eight 8-bit weights in parallel. The new
architecture has a module to store the indexes and to
generate the read addresses of the batch memories. Figure 7
illustrates the architecture for a bock size of eight.

Sixteen indexes are read from the 64-bit DMA word
followed by sixteen blocks of eight weights each (16 x 64).
The sixteen indexes are serialized and written in a FIFO.
Each different kernel has an associated FIFO. During the
computation of the inner product, the indexes are read
and added sequentially to the initial address of the batch
memory to determine the read address of a block of eight
activations. The batch memory is a dual port memory with
one port for each core in a line (each core in a line runs
a different kernel). All batch memories receive the same
pair of addresses. To calculate more kernels in parallel the
architecture illustrated in the figure is replicated, including

Size of Kernel

Size of Kernel

Indexes
Weights
Indexes
Weights

Indexes
Weights

Figure 5 Organization of the kernel in memory.

@ Springer

538

J Sign Process Syst (2021) 93:531-544

v v v
Index Memory
Address Generator | Wmem | | \Wmem | 777777 | Wmem |

Batch
Memq + + +
Core Core Coreom
Shit Bl 00 bil o1) 0
RelLU -
Batch
Mem, v ¥ v
Core Core Core
Shlft B 10 B 1" P im
RelLU A
Batch
Mem, v v v
Core Core Corexm
Shift B kO M k1 P ki
RelLU —

Figure 6 Architecture of the fully connected module with support for
pruned weights in dense layers.

the batch memories with copied contents, to provide extra
read ports.

The internal products received from the cores go through
the fixed-point scale adjustment, the activation function and
than concatenated into a 64-bit word to be stored in the batch
memory.

The architecture must be adjusted for other pruning block
sizes as follows:

1. Block size = 4: Two indexes are stored in parallel in the
FIFO since two blocks will be read in parallel from the
weight memory in a total of eight weights. Two read
addresses are generated from the two parallel indexes,
one for each block of the same kernel. Therefore, each
dual-port batch memory provides the two blocks of four
activations for the same core in a line. In this case, each
core in a line requires one dual-port memorys;

2. Block size = 2: Four indexes are stored in parallel in
the FIFO since four blocks will be read in parallel from
the weight memory in a total of eight weights. Four
read addresses are generated from the four parallel
indexes, one for each block of the same kernel. There-
fore, the dual-port batch memory must be replicated
to provide four ports of the same batch memory map.
Therefore, each core in a line requires two dual-port
memories;

3. Block size = 1: This is normal pruning. Eight indexes
are stored in parallel in the FIFO since eight blocks (one
weight each) will be read in parallel from the weight
memory in a total of eight weights. Eight read addresses
are generated from the eight parallel indexes, one for
each block of the same kernel. Therefore, the dual-port
batch memory must be replicated to provide eight ports

@ Springer

o Toweight
From DMA &7 memory
Register
KernelO Kernel1
Addr0 + + Addr1

Write addr Write addr
generator 0 \ 4 \ 4 generator 1
MUX MUX
11 11

From DMA +’64 addrOBatC:ddm 7&} To core 00
Memory 0 —gz» To core 01
s:ﬂftj 1% From cores 00/01
v A 4
From DMA ﬁ;w addrOBatC;ddM vﬁ} To core kO
Memory k 7> To core k1
RS:Ilthj 16 From core k0/k1

Figure 7 Architecture of the index memory and address generator for
a block size fo eight.

of the same batch memory map. Therefore, each core in
a line requires four dual-port memories.

Figure 8 illustrates the implementation for a block size of
four.

The configuration requires more on-chip memory and
more logic to generate multiple addresses in parallel. The
number of possible indexes also doubles since the size of
the block is half the size.

This solution reduces the volume of data that has to
be transferred from external memory and the number of
multiply accumulations is the same as the number of
weights. The architecture supports unbalanced number of
weights in each kernel, since all cores wait for the end of
execution of all cores.

7 Results

The new architecture with the proposed pruning method was
implemented with Vivado 2019.1 and tested in a ZedBoard

J Sign Process Syst (2021) 93:531-544 539
Figure 8 Architecture of the i
9 From DMA p 1O weight
index memory and address memory
generator for a block size of four. Register
Index " Index o
Generator Generator
Kernel0
i
addr0 addr1
From DMA ﬁw Batch v342> To core 00 Copy 7342>To core 01
Batch
Memory 0
%> To core 00 Memory 0 %> To core 01
5 From cores 00/01
\ 4 y A 4 \ 4
addr0 addr1
From DMA ﬁr» Batch 767’ To core kO Copy 7342> To core k1
Memory k Batch
y 7> To core k1 Memory 0 %> To core k1
5 From core kO/k1

with a small density FPGA - ZYNQ XC7Z7020 (Artix-
7 FPGA with a dual ARM Cortex-A9 CPU). The circuit
operates at 200 MHz. To demonstrate the scalability of the
proposed architecture, it was also mapped in a XC7Z045
FPGA (Kintex-7 FPGA with a dual ARM Cortex-A9 CPU)
with an operating frequency of 230 MHz. ZYNQ FPGAs
have four 64-bit High-Performance (HP) ports working at
working at 150 MHz that gives programmable logic direct
access to external memory. The measured external memory
bandwidth is 3.3 GBytes/s. All architectures were tested
with AlexNet.

The proposed architecture was configured and imple-
mented with block pruning with sizes of 8, 4, 2 and 1. The
accuracy of the network for different pruning percentages
with different block sizes and 8 bit fixed-point quantization
was determined (see Figure 9, where Bx is the configuration
with block size x).

From the results, we observe that the size of the pruning
block influences the accuracy of the network, but with small
variations. Considering a pruning of 90% and a block of
size 8, the accuracy difference to a non-pruned network
is about 1.8. Similar results were obtained with 16 bit
quantization since the accuracy difference between 8 bit and
16 bit quantization is small (around 1.5). Also, considering
a pruning of 90 %, the accuracy difference from a block of
size one to a block of size 8 is 1.3.

We have synthesized and implemented the best archi-
tectures for different pruning and block sizes with the
following configurations. We designate the architecture as
Arq_B_P, where B indicates the block size and P indicates
the pruning percentage. We considered block sizes of 1, 2, 4,
8 and pruning of 90%, 70% and 0%. All architectures were
mapped in both FPGAs, the ZYNQ7020 (see Tables 1 and
2) and the ZYNQO45 (see Tables 3 and 4).

The table includes the number of cores in each processing
module: convolutional module and fully connected module.
With a high pruning of 90%, a batch of two is still required,
but the intra-parallelism of the fully connected module is
only one because the bandwidth available for the fully
connected module is only able to feed one core. The

AlexNet

56

§ ——B1
g s \ 5
§ 52 B4
<

I B8
2 50

0 20 40 60 80 100
Pruning (%)

Figure 9 Variation of accuracy with pruning percentage and block
size.

@ Springer

540

J Sign Process Syst (2021) 93:531-544

Table 1 Results of the

architecture for different block ZYNQ7020

sizes and a pruning of 90% and

the baseline architecture in a Arq-8.90 Arq-4.90 Arq-2.90 Arq-1.90 Arq-1.0

ZYNQT7020 SoC FPGA. Conv cores 16 x 7 16 x 7 16 x 7 16 x 7 16 x 7
FC cores 1x2 1x2 1x2 1x2 2x6
Batch 2 2 2 2 6
LUT 43323 43393 43473 43573 46130
DSP 220 220 220 220 220
BRAM(36 Kbits) 110 110 122 130 134
Equivalent GOPs 347 347 347 347 294
Images/s 240 240 240 240 203

architecture achieves the same performance for all sizes of
the pruning blocks. The only difference is in the required
resources. As we move to a lower block size, the number
of LUTs increases slightly and the number of BRAMs also
increases. This is a major point to take into consideration
when the architecture is mapped on small density FPGAs
where the on-chip memory resources is scarce. Compared
to the original baseline architecture, the pruned architecture
improves the performance 18%. The proposed architecture
with a block size of one (only 0.5% percent reduction
in accuracy) is 6% smaller in area and 18% faster. We
also observe that since the intra-parallelism is only one,
the results with a block size of four are identical to those
with a block size of eight. If the available memory for the
fully connected module was enough to allow a higher intra-
parallelism, the implementation with a block size of eight
would be smaller. So, the advantage of a higher block size
is only evident with a higher memory bandwidth for dense
layers.

When the pruning is decreased to 70%, the batch must
increase to three to compensate the increase of the number
of fully connected weights. The intra-parallelism of the fully
connected module is kept at one. The architecture achieves
the same performance for the first three sizes of the pruning
blocks with an increase in the required resources. However,

for a block size of one, the FPGA does not have enough
BRAMSs to implement the batch size of three. The batch
was reduced to two with a redution in performance and still
requiring the highest number of BRAMs. Compared to the
baseline architecture, the 70% pruned architecture improves
the performance by 17%, a slight reduction because of the
reduction in pruning.

Considering the larger ZYNQ7045 FPGA, with a pruning
of 90%, a batch of sixteen is required, but the intra-
parallelism of the fully connected module is still one
because of the limited bandwidth of the ZYNQ. The
architecture achieves the same performance for all sizes
of the pruning blocks with a slight reduction for a unitary
block size. The number of LUTs increases slightly with
the reduction of the block size. The main increase in
resources is the number of BRAMs. Since the batch is
high, the architecture with BS=1 needs 73% more BRAMs
than the architecture with BS=8. Compared to the original
baseline architecture, the pruned architecture improves the
performance by 37%, but the performance of the baseline
architecture was achieved with a batch size of 32.

With a pruning of 70%, the architectures are identical
to those used with a pruning of 90%. The increase in the
number of weights is compensated by the data dispatcher
that gives more bandwidth to the fully connected module.

Table 2 Results of the

architecture for different block ZYNQ7020

sizes and a pruning of 70% and

the baseline architecture in a Arq-8.70 Arq-4.70 Arq-2.70 Arq-1.70 Arq-1.0

ZYNQ7020 SoC FPGA. Conv cores 16 x 7 16 x 7 16 x 7 16 x 7 16 x 7
FC cores 1x2 1x2 1 x27 1x2 2x6
Batch 3 3 3 2 6
LUT 43901 43971 44051 43573 46130
DSP 220 220 220 220 220
BRAM(36 Kbits) 118 118 130 138 134
Equivalent GOPs 344 344 344 275 294
Images/s 238 238 238 190 203

@ Springer

J Sign Process Syst (2021) 93:531-544 541

Table 3 Results of the

architecture for different block ZYNQ7045

sizes and a pruning of 90% and

the baseline architecture in a Arq-8.90 Arq-4.90 Arq-2.90 Arq-1.90 Arq-1.0

ZYNQT7045 SoC FPGA. Conv cores 64 x 7 64 x 7 64 x 7 64 x 7 64 x 7
FC cores 1x16 1 x16 1 x 167 1 x16 1x32
Batch 16 16 16 16 32
LUT 170279 170349 170429 170529 181135
DSP 728 728 728 728 748
BRAM(36 Kbits) 262 262 326 454 388
Equivalent GOPs 1123 1123 1123 1114 819
Images/s 775 775 775 769 565

The execution time of both modules increases, with a
consequent reduction of the performance. Compared to
the original baseline architecture, the pruned architecture
improves the performance by 19%, a slight reduction
because of the reduction in pruning.

To analyze the importance of batch versus pruning, two
architectures with BS =4 and different small batch (1, 2 and
3) were executed. This establishes the importance of each
method and, in particular, of pruning when image batch is
not allowed (see results in Figure 10)

Without batch (batch = 1), pruning is fundamental to
achieve a performance up to 4 x better than an architecture
without pruning. Batch introduces an extra improvement
over pruning with no accuracy degradation. The influence
of batch is higher when pruning is lower. For example, with
the highest pruning, the batch has only a slight influence.

It is interesting to observe that the same image through-
put can be achieved with different combinations of pruning
and batch. For example, the performance of the architecture
with batch=1 and pruning=60% is the same of the architec-
ture with batch=2 and prune=20%. The difference is that the
last architecture is more accurate since the pruning is lower.
Therefore, the best architecture depends on the constraints
in terms of batch, accuracy and available resources.

The same experiment was done with the ZYNQ7045
FPGA (see results in F igure 11)

The main difference is that the batch method now has
a bigger effect over the performance of the architecture.
This has to do with the fact that the memory bandwidth
is the same for an architecture with more computational
resources. In this case, the computation to communication
ratio decreases and the communication bottleneck is more
evident. The batch method is important to balance both
communication and computation.

We have compared configuration B4 with 8 bit quantiza-
tion, 90 % pruning and batch with previous works running
AlexNet. The overall results are shown in Table 5.

There are only a few works implemented in a small
ZYNQ7020 using 8-bit quantization. Compared to [43],
the proposed architecture is 4.1 x faster and more efficient
(GOPs/KLUT and GOPs/DSP) with just 0.3% difference in
accuracy. Compared to the solutions with 16-bit data, the
improvement is 4 x better than the pruned architecture [44]
and 12.5x better than [44].

When mapped to a ZYNQ7045, the proposed architec-
ture is better than the previous works with a slight reduction
in accuracy. The efficiency of the proposed architecture is
also better than the state of the art proposals.

Table 4 Results of the

architecture for different block ZYNQ?7045

sizes and a pruning of 70% and

the baseline architecture in a Arq-8-90 Arg-4.90 Arq-2.90 Arq-1.90 Arq-1.0

ZYNQ7045 SoC FPGA. Conv cores 64 x 7 64 x 7 64 x 7 64 x 7 64 x 7
FC cores 1x16 1x16 1x16 1x16 1x32
Batch 16 16 16 16 32
LUT 170279 170349 170429 170529 181135
DSP 728 728 728 728 748
BRAM(36 Kbits) 262 262 326 454 388
Equivalent GOPs 979 972 959 929 819
Images/s 676 671 662 641 565

@ Springer

542

J Sign Process Syst (2021) 93:531-544

250

M Batch=1 mBatch=2 mBatch=3

200
150
10
- Jd
T
0O 10 20 30 60 7

0 40 50 0 80 90
Pruning (%)

o

Images/s

o

Figure 10 Variation of performance with pruning percentage, con-
sidering BS=4 and two different batch sizes, 1 and 2 in a ZYNQ
7020.

500

M Batch=1 mBatch=2 mBatch=3

N w B
o [=] o
o o o

Images/s

=
o
o

0.|.|.I|I||||I‘|“H
0 10 20 30 40 50 60 70 80 9

Pruning (%)

0

Figure 11 Variation of performance with pruning percentage, con-
sidering BS=4 and two different batch sizes, 1 and 2 in a ZYNQ
7045.

8 Conclusions

In this work a block pruning technique and an extended
architecture to support pruned networks were proposed.
The extended architecture with configurable pruning
datapath proposed in this work permits to improve
the performance/area efficiency with minimal accuracy
reduction. This is fundamental for embedded systems with
low resources. The required on-chip memory to support
weight pruning depends on the block size of the pruning
technique. An integrated design of both pruning and image
batch leads to different architectural solutions with different
area and different network accuracy.

The results show that the proposed accelerator of con-
volutional neural networks in low density FPGAs achieves
very good accuracy with high image processing throughput.

In the future, we plan to integrate more optimization
techniques oriented for best hardware datapath design.

Acknowledgments This work was supported by national funds
through Fundagdo para a Ciéncia e a Tecnologia (FCT) with
reference UIDB/50021/2020 and was also supported by project
IPL/IDI&CA/2020/TRAINEE/ISEL through Instituto Politécnico de
Lisboaa.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

Table 5 Performance comparison of Lite-CNN with other works in low density ZYNQ7020 and ZYNQ7045 SoC FPGAs.

ZYNQ 7020

Work Format Freq (MHz) GOPs GOPs/kLUT GOPs/DSP Latency (ms) Acc.
[49] 16 x 16 100 19 0.35 0.08 71.75 a)
[50] 16 x 16 150 20 0.38 0.09 —)
[42] 16 x 16 125 38 0.73 0.17 524 a)
[44] 16 x 16 200 80 1.5 0.36 16,7 @
[43] 8 x8 214 84 1.6 0.38 17.2 53.9%
This work 8 x8 200 322 7.4 1.46 4.17 53.6%
ZYNQ 7045

Work Format Freq (MHz) GOPs GOPs/kLUT GOPs/DSP Latency (ms) Acc.
[28] 8 x 8 200 493 5.7 0.6 2.94 54.6%
[8] 8§ x8 200 133 2.9 0.6 10.9 —
[51] 8 x8 30 290°) 2.8 0.4 4.9 55.9%
This work 8 x8 230 1123 6.6 1.5 1.3 54 %
This work 8 x8 230 972 5.7 1.3 1.5 54.3 %

a) Authors assume accuracy close to that obtained with floating-point - 55,9%

b) With pruning and image batch
c) Convolution layers only in ZYNQ Ultrascale+ XCZU7EV

@ Springer

J Sign Process Syst (2021) 93:531-544

543

References

10.

11.

12.
13.

14.

16.

. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,

S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg,
A.C., Fei-Fei, L. (2015). Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3),211-
252. https://doi.org/10.1007/s11263-015-0816-y.

. Cun, YL., Jackel, L.D., Boser, B., Denker, J.S., Graf, HP,

Guyon, I., Henderson, D., Howard, R.E., Hubbard, W. (1989).
Handwritten digit recognition: applications of neural network
chips and automatic learning. I[EEE Communications Magazine,
27(11), 41-46. https://doi.org/10.1109/35.41400.

. Krizhevsky, A., Sutskever, 1., Hinton, G.E. (2012). Imagenet

classification with deep convolutional neural networks. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1 (pp. 1097-1105).
USA: NIPS’12, Curran Associates Inc.

. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional

networks for large-scale image recognition. In Proceedings of the
3rd International Conference on Learning Representations.

. Szegedy, C., Liu, W,, Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,

Erhan, D., Vanhoucke, V., Rabinovich, A. (2015). Going deeper
with convolutions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 1-9).

. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning

for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 770-778).

. Véstias, M. (2020). Deep learning on edge: Challenges and

trends. In Rodrigues, J.M., Cardoso, P.J., Monteiro, J., Ramos,
C.M. (Eds.) Smart Systems Design, Applications, and Challenges
(pp- 23-42): IGI Global.

. Véstias, M.P,, Duarte, R.P., deSousa, J.T., Neto, H. (2018). Lite-

cnn: A high-performance architecture to execute cnns in low
density fpgas. In Proceedings of the 28th International Conference
on Field Programmable Logic and Applications.

. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-

shick, R., Guadarrama, S., Darrell, T. (2014). Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093.

Gysel, P., Pimentel, J., Motamedi, M., Ghiasi, S. (2018). Ristretto:
A framework for empirical study of resource-efficient inference
in convolutional neural networks. IEEE Transactions on Neural
Networks and Learning Systems. https://doi.org/10.1109/TNNLS.
2018.2808319.

Véstias, M. (2020). Processing systems for deep learning
inference on edge devices. In Mastorakis, G., Mavromoustakis,
C.X., Batalla, J.M., Pallis, E. (Eds.) Convergence of Artificial
Intelligence and the Internet of Things (pp. 213-240). Cham:
Springer International Publishing.

Google: Edge TPU. (2019) https://cloud.google.com/edge-tpu/.
Coral: EDGE TPU Performance Benchmarks. (2020) https://coral.
ai/docs/edgetpu/benchmarks.

Mairio, V., Lopes, J.D., Véstias, M., deSousa, J.T. (2020).
Implementing cnns using a linear array of full mesh cgras. In
Rincén, F., Barba, J., So, H.K.H., Diniz, P., Caba, J. (Eds.) Applied
Reconfigurable Computing. Architectures, Tools, and Applications
(pp- 288-297). Cham: Springer International Publishing.

. Chakradhar, S., Sankaradas, M., Jakkula, V., Cadambi, S. (June

2010). A dynamically configurable coprocessor for convolutional
neural networks. SIGARCH Comput. Archit. News, 38(3), 247—
257. https://doi.org/10.1145/1816038.1815993.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen,
T., Xu, Z., Sun, N., Temam, O. (2014). Dadiannao: A machine-
learning supercomputer. In 2014 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (pp. 609-622).

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Zhang, C., Li, P, Sun, G., Guan, Y., Xiao, B., Cong, J. (2015).
Optimizing fpga-based accelerator design for deep convolutional
neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
FPGA 15 (pp. 161-170). New York: ACM.

Liu, B., Zou, D., Feng, L., Feng, S., Fu, P, Li, J. (2019).
An fpga-based cnn accelerator integrating depthwise separable
convolution. Electronics, 8(3), 18.

Rivera-Acosta, M., Ortega-Cisneros, S., Rivera, J. (2019).
Automatic tool for fast generation of custom convolutional neural
networks accelerators for fpga. Electronics, 8(6), 17.

Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang,
T., Xu, N., Song, S., Wang, Y., Yang, H. (2016). Going deeper
with embedded fpga platform for convolutional neural network.
In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16 (pp. 26-35). New
York: ACM.

Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula,
S., Seo, 1.S., Cao, Y. (2016). Throughput-optimized opencl-based
fpga accelerator for large-scale convolutional neural networks. In
Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16 (pp. 16-25). New
York: ACM.

Qiao, Y., Shen, J., Xiao, T., Yang, Q., Wen, M., Zhang, C.
(2017). Fpga-accelerated deep convolutional neural networks
for high throughput and energy efficiency. Concurrency and
Computation: Practice and Experience, 29(20), e3850-n/a.
https://doi.org/10.1002/cpe.3850,cpe.3850.

Liu, Z., Dou, Y., Jiang, J., Xu, J., Li, S., Zhou, Y., Xu, Y. (July
2017). Throughput-optimized fpga accelerator for deep convolu-
tional neural networks. ACM Trans. Reconfigurable Technol. Syst.,
10(3), 17:1-17:23. https://doi.org/10.1145/3079758.

Alwani, M., Chen, H., Ferdman, M., Milder, P. (2016).
Fused-layer cnn accelerators. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (pp. 1-
12).

Shen, Y., Ferdman, M., Milder, P. (2017). Maximizing cnn
accelerator efficiency through resource partitioning. SIGARCH
Comput. Archit. News, 45(2), 535-547. https://doi.org/10.1145/
3140659.3080221.

Gongalves, A., Peres, T., Véstias, M. (2019). Exploring data
bitwidth to run convolutional neural networks in low density
fpgas. In Hochberger, C., Nelson, B., Koch, A., Woods, R.,
Diniz, P. (Eds.) Applied Reconfigurable Computing (pp. 387—401).
Cham: Springer International Publishing.

Gysel, P., Motamedi, M., Ghiasi, S. (2016). Hardware-oriented
approximation of convolutional neural networks. In Proceedings
of the 4th International Conference on Learning Representations.
Wang, J., Lou, Q., Zhang, X., Zhu, C., Lin, Y., Chen, D. (2018). A
design flow of accelerating hybrid extremely low bit-width neural
network in embedded fpga. In 28th International Conference on
Field-Programmable Logic and Applications.

Véstias, M.P., Duarte, R.P., De Sousa, J.T., Neto, H.C. (2020). A
configurable architecture for running hybrid convolutional neural
networks in low-density fpgas. IEEE Access, 8, 107229-107243.

Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong,
P., Jahre, M., Vissers, K. (2017). Finn: A framework for fast,
scalable binarized neural network inference. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17 (pp. 65-74). New York:
ACM. https://doi.org/10.1145/3020078.3021744.

Han, S., Mao, H., Dally, W.J. (2015). Deep compression: Com-
pressing deep neural network with pruning, trained quantization
and huffman coding. CoRR, arXiv:1510.00149.

@ Springer

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/35.41400
http://arxiv.org/abs/1408.5093
https://doi.org/10.1109/TNNLS.2018.2808319
https://doi.org/10.1109/TNNLS.2018.2808319
https://cloud.google.com/edge-tpu/
https://coral.ai/docs/edgetpu/benchmarks
https://coral.ai/docs/edgetpu/benchmarks
https://doi.org/10.1145/1816038.1815993
https://doi.org/10.1002/cpe.3850,cpe.3850
https://doi.org/10.1145/3079758
https://doi.org/10.1145/3140659.3080221
https://doi.org/10.1145/3140659.3080221
https://doi.org/10.1145/3020078.3021744
http://arxiv.org/abs/1510.00149

544

J Sign Process Syst (2021) 93:531-544

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R.,
Mahlke, S. (June 2017). Scalpel: Customizing dnn pruning to
the underlying hardware parallelism. SIGARCH Comput. Archit.
News, 45(2), 548-560. https://doi.org/10.1145/3140659.3080215.
Albericio, J., Judd, P, Hetherington, T., Aamodt, T., Jerger,
N.E., Moshovos, A. (2016). Cnvlutin: Ineffectual-neuron-free
deep neural network computing. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA) (pp.
1-13).

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M.A., Dally, WJ. (2016). Eie: Efficient inference engine on
compressed deep neural network. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA) (pp.
243-254).

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan,
R., Khailany, B., Emer, J., Keckler, S.W., Dally, W.J. (June
2017). Scnn: An accelerator for compressed-sparse convolutional
neural networks. SIGARCH Comput. Archit. News, 45(2), 27-40.
https://doi.org/10.1145/3140659.3080254.

Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R.,
Ong GeeHock, J., Liew, Y.T., Srivatsan, K., Moss, D., Sub-
haschandra, S., Boudoukh, G. (2017). Can fpgas beat gpus
in accelerating next-generation deep neural networks? In Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA 17 (pp. 5-14). New
York: ACM. https://doi.org/10.1145/3020078.3021740.

Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A.,
Tapiador-Morales, R., Lungu, 1., Milde, M.B., Corradi, F.,
Linares-Barranco, A., Liu, S., Delbruck, T. (2019). Nullhop: A
flexible convolutional neural network accelerator based on sparse
representations of feature maps. IEEE Transactions on Neural
Networks and Learning Systems, 30(3), 644—656. https://doi.org/
10.1109/TNNLS.2018.2852335.

Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., Guo, Q.,
Chen, T., Chen, Y. (2016). Cambricon-x: An accelerator for sparse
neural networks. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (pp. 1-12).

Lu, L., Xie, J., Huang, R., Zhang, J., Lin, W., Liang, Y. (2019).
An efficient hardware accelerator for sparse convolutional neural
networks on fpgas. In 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM) (pp 17-25).

Véstias, M.P., Duarte, R.P., deSousa, J.T., Neto, H.C. (2019).
Fast convolutional neural networks in low density fpgas
using zero-skipping and weight pruning. Electronics (8), 11.
https://doi.org/10.3390/electronics8111321.

Véstias, M., Duarte, R., Sousa, J.T.D., Neto, H. (2020). Moving
deep learning to the edge. Algorithms, 13, 125.

Venieris, S.I., & Bouganis, C. (2018). fpgaconvnet: Mapping
regular and irregular convolutional neural networks on fpgas.
1IEEE Transactions on Neural Networks and Learning Systems, 1—
17. https://doi.org/10.1109/TNNLS.2018.2844093.

Guo, K., Sui, L., Qiu, J., Yu, J.,, Wang, J., Yao, S., Han, S.,
Wang, Y., Yang, H. (2018). Angel-eye: A complete design flow
for mapping cnn onto embedded fpga. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(1),
35-47. https://doi.org/10.1109/TCAD.2017.2705069.

@ Springer

44.

45.

46.

47.

48.

49.

50.

51.

Gong, L., Wang, C., Li, X., Chen, H., Zhou, X. (2018). Maloc: A
fully pipelined fpga accelerator for convolutional neural networks
with all layers mapped on chip. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(11), 2601—
2612. https://doi.org/10.1109/TCAD.2018.2857078.

Véstias, M.P., Duarte, R.P., de Sousa, J.T., Neto, H.C. (2020). A
fast and scalable architecture to run convolutional neural networks
in low density fpgas. Microprocessors and Microsystems, 77,
103136.

Peres, T., Gongalves, A., Véstias, M. (2019). Faster convolutional
neural networks in low density fpgas using block pruning.
In Hochberger, C., Nelson, B., Koch, A., Woods, R., Diniz,
P. (Eds.) Applied Reconfigurable Computing (pp. 402-416).
Cham: Springer International Publishing.

Struharik, R.J.R., Vukobratovi¢, B.Z., Erdeljan, A.M., Rakanovic,
D.M. (2020). Conna-hardware accelerator for compressed convo-
lutional neural networks. Microprocessors and Microsystems, 73,
102991.

Véstias, M. (2021). Convolutional neural network. In Khosrow-
Pour, D.B.AM. (Ed.) Encyclopedia of Information Science and
Technology, Fifth Edition (pp. 12-26): 1GI Global.

Wang, Y., Xu, J., Han, Y., Li, H., Li, X. (2016). Deepburning:
Automatic generation of fpga-based learning accelerators for the
neural network family. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC) (pp. 1-6).

Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J.K., Shao, C.,
Mishra, A., Esmaeilzadeh, H. (2016). From high-level deep neural
models to fpgas. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (pp. 1-12).

Zhang, M., Li, L., Wang, H., Liu, Y., Qin, H., Zhao, W. (2019).
Optimized compression for implementing convolutional neural
networks on fpga. Electronics, 8(3), 295. https://doi.org/10.3390/
electronics8030295.

Mario P. Véstias is a Coor-
dinate Professor at the
Polytechnic Institute of Lis-
bon, School of Engineering
(ISEL), Department of Elec-
tronic, Telecommunications
and Computer Engineering
(DEETC). He is a senior
researcher at the Electronic
Systems Design and Automa-
tion group at the research
institute INESC-ID in Lisbon.
His main research interests
are Computer Architectures
and Digital Systems for
High-Performance Embedded
Computing, with an empha-

sis on Reconfigurable Computing. He is a PhD in Electrical and
Computer Engineering from the Technical University of Lisbon.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3140659.3080215
https://doi.org/10.1145/3140659.3080254
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.3390/electronics8111321
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/TCAD.2017.2705069
https://doi.org/10.1109/TCAD.2018.2857078
https://doi.org/10.3390/electronics8030295
https://doi.org/10.3390/electronics8030295

	Efficient Design of Pruned Convolutional Neural Networks on FPGA
	Abstract
	Introduction
	Related Work
	Convolutional Neural Network
	Baseline Architecture Overview
	Block Pruning of Dense Layers
	Proposed Architecture with Support for Block Pruning
	Results
	Conclusions
	References

