Ocular changes in OI in a Portuguese population

Rafael Barão, MD

Authors: Patrícia Firmino, Rafael Barão, Débora Pereira, Mariana de Sá, Patrícia Monteiro, Paula Silva, Ana C. Fonseca, Ilda M. Poças
Conflicts of interest

I, Rafael Barão, DO NOT have a financial interest/arrangement or affiliation with one or more organizations which could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.
Background

• OI can cause several ocular manifestations

• The most common (and noticeable) is the bluish coloration of the sclerae (+ type I)\(^1,2\)

• Other common manifestations include
 • Reduced corneal thickness\(^2,3,4\) and rigidity\(^4\)
 • High refractive errors\(^5\)
 • Keratoconus\(^6,7\)
 • Glaucoma (higher incidence *de per se* or higher risk?)\(^2,8,9,10,11\)

• Less common: scleral rupture\(^12\), retinal hemorrhages\(^13\), CNV\(^14\), among others

1. Silence *et. al.* 1993
2. Hald *et al.* 2018
3. Pedersen *et. al.* 1984
4. Lagrou *et. al.* 2018
5. Chau *et. al. in Osteogenesis Imperfecta*, 2014
7. Zeri *et. al.* 2018
8. Congdon *et. al.* 2006
9. Rosbach *et. al.* 2011
10. Wallace *et. al.* 2014
11. Pirouzian *et. al.* 2007
12. Mauri *et. al.* 2016
13. Ganesh *et. al.* 2004
Objectives

• Assess and explore the ocular features of OI patients in an adult Portuguese population

• Exploratory analysis of relationships between OI types and ocular phenotypes

• Exploratory analysis of relationships between several variables
Study design and setting

• An ongoing cross-sectional study on the ocular features in OI patients

• Protocol envolves coordinated visitations to several departments
 • Cardiology, Genetics, Rheumatology, Stomatology and Ophthalmology
Methods

• All patients underwent complete ophthalmological exam and extensive testing

 • BCVA, ocular motility and alignment testing
 • Slit-lamp biomicroscopy and fundus observation
 • Automated refractometry
 • Tonometry (GAT)
 • Corneal tomography (Pentacam® HR)
 • Non-mydriatic retinography
31 adult Portuguese patients have enrolled

- 24 ♀, 7 ♂
- Mean age: 43 ± 16y
- Height 146 ± 19 cm and weight 57 ± 16 kg
Visual acuity and refractive errors

- Mean BCVA 0.09 ± 0.2 logMAR (similar OU)
- Mean Sph -1.3 ± 5.2 D, Cyl -1.3 ± 0.9 D
 - 7 patients w/ high grade refractive errors
 - High myopia (range -6.5 to -24D): 8 eyes
 - High hyperopia (range 5.25 to 6.75D): 3 eyes
 - Cyl: 52% WTR, 25% ATR, 23% Obl
- BCVA correlated with Sph error ($r = -0.3; p = 0.01$)
Visual acuity and refractive errors

- No significant difference in BCVA or refractive errors between OI clinical or genetic types
Visual acuity and refractive errors

- **No significant difference** in BCVA or refractive errors **between OI clinical or genetic types**
Visual acuity and refractive errors

- **No significant difference** in BCVA or refractive errors **between OI clinical or genetic types**
Corneal thickness

- Avg CCT was \(481 \pm 54 \mu m\) (similar OU)
 - Significantly reduced vs. reference range\(^1\) \((p < 0.001)\)
 - Significantly different between OI type I and non-type I \((p = 0.01)\)
 - Types I vs. IV \((p = 0.026)\)
 - Types I vs. III \((p > 0.05)\)
- 77% of patients had thin corneas
 - 2 patients had thick corneas (avg 599 \(\mu m\))
 - 1 type IV and 1 thus far unclassified
 - 5 patients had normal CCT

1. Hoffmann et. al 2013
Corneal thickness

- Avg CCT was $481 \pm 54 \mu m$ (similar OU)
 - Significantly reduced vs. reference range ($p < 0.001$)
 - Significantly different between OI type I and non-type I ($p = 0.01$)
 - Types I vs. IV ($p = 0.026$)
 - Types I vs. III ($p > 0.05$)

- 77% of patients had thin corneas
 - 2 patients had thick corneas (avg 599 µm)
 - 1 type IV and 1 thus far unclassified
 - 5 patients had normal CCT

1. Hoffmann et. al 2013
Sclerae

- **80%** of patients had some form of (dis)coloration of the sclerae
- **CCT** was significantly lower in patients with blue sclerae ($p < 0.001$)
Intraocular pressure

- Mean IOP 13.8 ± 4.8 mmHg
- IOP correlated with CCT ($p < 0.001$)
 - Blue vs. white sclerae
 13.2 ± 4.9 vs. 16.3 ± 3.4 mmHg ($p = 0.03$)
 - Did not differ significantly between OI types
Intraocular pressure

• Mean IOP 13,8 ± 4,8 mmHg

• IOP correlated with CCT
 \((p < 0,001)\)
 • Blue vs. white sclerae
 13,2 ± 4,9 vs. 16,3 ± 3,4 mmHg
 \((p = 0,03)\)

• Did not differ significantly
 between OI types
Corneal tomography

• Prevalence of corneal tomographic changes\(^{1,2}\): 77%

• Clinical bilateral keratoconus: 2 patients / Subclinical: 3 pts / Suspect corneas: 16 pts (10 bil.) bilateral

• No statistical difference between type I and non-type I groups (p > 0.05)

2. Shetty et. al 2017
Corneal tomography

Elevation (Front)

-Elevation (Back)

-Progression Index:
Min: 0.58
Max: 1.81
Av: 1.38
AF1max: 250

Corneal Thickness

Mean corneal thickness values on rings concentrically to the thinnest location

Corneal Thickness Spatial Profile (CTSP)

Percentage Thickness Increase (PTI)

Reference Database:
- Myopic/Normal
- Hyperopic/Mixed Cyl

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Myopic/Normal</th>
<th>Hyperopic/Mixed Cyl</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13.85</td>
<td></td>
<td>7.30</td>
</tr>
</tbody>
</table>
Glaucoma

• Only 1 patient has been diagnosed with glaucoma...

... But she has active Behçet’s disease-associated uveitis
Retinal changes

• No relevant segment changes were detected
 ... Other than chorioretinal atrophy associated with high grade myopia
Discussion

• The majority of patients were OI type I and COL1A1 was the most common causative gene

• Clinical validity of these findings is stronger in type I disease

• Type I and type III populations seem similar (IOP, CCT, blue sclerae)
Discussion

• BCVA was moderately reduced, and there was a high incidence of high-grade ametropia
 • Do collagen anomalies affect the axial length of the eye?

• Reduced CCT is an hallmark of ocular disease in OI
 • Correlates negatively with IOP and is more associated to type I disease and with blue sclerae
 • What is its usefulness in diagnosis?¹
 • Is it a risk factor for the development of glaucoma?²
 • The COL1A1 gene has been associated with several forms of glaucoma³

• How is the relationship between blue sclerae and CCT relevant?
 • Is it dependent on the continuity of thinning of the sclerocorneal layer?
 • Or is it best explained by the molecular changes particular to OI type I?

¹. Hald et al. 2018
². Congdon et. al. 2006
Discussion

• Diagnosis of glaucoma in OI patients presents a clinical challenge

• Lower IOPs and lower CCTs

• Do the collagen changes in the sclerocorneal layer affect the way cupping develops?

• Since we did not perform posterior segment OCT or SAP the epidemiology of glaucoma in this population may be underestimated
Discussion

• Diagnosis of glaucoma in OI patients presents a clinical challenge

 • Lower IOPs and lower CCTs

 • Do the collagen changes in the sclerocorneal layer affect the way cupping develops?

 • Since we did not perform posterior segment OCT or SAP the epidemiology of glaucoma in this population may be underestimated
Discussion

• There was a significantly high prevalence of tomographically abnormal corneas...

... However

• There was no significant difference between OI clinical types

• There was no significant difference in BCVA between abnormal and normal córneas

• Are current keratoconus tomographic screening indices\(^1,2\) applicable in this populations?

1. Hashemi et. al 2016
2. Shetty et. al 2017
THANK YOU FOR YOUR ATTENTION!

rafaelcbarao@gmail.com