Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/571
Título: Grid structure impact in sparse point representation of derivatives
Autor: Domingues, Margarete O.
Ferreira, Paulo J. S. G.
Gomes, Sonia M.
Gomide, Anamaria
Pereira, José R.
Pinho, Pedro Renato Tavares
Palavras-chave: Wavelets
Multiresolution analysis
Adaptivity
Sparse grids
Finite differences
Consistency analysis
Data: 15-Jul-2010
Editora: Elsevier Science BV
Citação: Domingues M O, Ferreira P J S G, Gomes S M, Gomide A, Pereira J R, Pinho P.Grid structure impact in sparse point representation of derivatives.Journal of Computational and Applied Mathematics. 2010; 234 (8): 2377-2389.
Relatório da Série N.º: 8;
Resumo: In the Sparse Point Representation (SPR) method the principle is to retain the function data indicated by significant interpolatory wavelet coefficients, which are defined as interpolation errors by means of an interpolating subdivision scheme. Typically, a SPR grid is coarse in smooth regions, and refined close to irregularities. Furthermore, the computation of partial derivatives of a function from the information of its SPR content is performed in two steps. The first one is a refinement procedure to extend the SPR by the inclusion of new interpolated point values in a security zone. Then, for points in the refined grid, such derivatives are approximated by uniform finite differences, using a step size proportional to each point local scale. If required neighboring stencils are not present in the grid, the corresponding missing point values are approximated from coarser scales using the interpolating subdivision scheme. Using the cubic interpolation subdivision scheme, we demonstrate that such adaptive finite differences can be formulated in terms of a collocation scheme based on the wavelet expansion associated to the SPR. For this purpose, we prove some results concerning the local behavior of such wavelet reconstruction operators, which stand for SPR grids having appropriate structures. This statement implies that the adaptive finite difference scheme and the one using the step size of the finest level produce the same result at SPR grid points. Consequently, in addition to the refinement strategy, our analysis indicates that some care must be taken concerning the grid structure, in order to keep the truncation error under a certain accuracy limit. Illustrating results are presented for 2D Maxwell's equation numerical solutions.
Peer review: yes
URI: http://hdl.handle.net/10400.21/571
ISSN: 0377-0427
Aparece nas colecções:ISEL - Eng. Elect. Tel. Comp. - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Grid structure impact in sparse point representation of derivatives_rep.pdf52,54 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.