Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/5129
Título: A numerical analysis of generalized Boussinesq-type equation using continuos/discontinuous FEM
Autor: Lopes, N. D.
Pereira, P. J. S.
Trabucho, L.
Palavras-chave: Boussinesq Equations
Surface Water Waves
Differential Operators
Asymptotic Analysis
Continuous
Discontinuous FEMs
Predictor-Corrector and Runge-Kutta Schemes
Data: Jul-2012
Editora: Wiley-blackwell
Citação: LOPES, N. D.; PEREIRA, P. J. S., TRABUCHO, L. – A numerical analysis of generalized Boussinesq-type equation using continuos/discontinuous FEM. International Journal for Numerical Methods in Fluids. ISSN: 0271-2091. Vol. 69, nr. 7 (2012), pp. 1186-1218
Resumo: An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.
Peer review: yes
URI: http://hdl.handle.net/10400.21/5129
DOI: 10.1002/fld.2631
ISSN: 0271-2091
Aparece nas colecções:ISEL - Matemática - Artigos



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.