Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/5014
Título: Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
Autor: Coelho, Maria Isabel Esteves
Corsato, Chiara
Rivetti, Sabrina
Palavras-chave: Quasilinear elliptic differential equation
Minkowski-curvature
Dirichlet boundary condition
Radial solution
Positive solution
Existence
Multiplicity
Variational methods
Data: Set-2014
Editora: Juliusz Schauder CTR Nonlinear Studies
Citação: COELHO, Maria Isabel Esteves; CORSATO, Chiara; RIVETTI, Sabina – Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball. Topological Methods in Nonlinear Analysis. ISSN: 1230-3429. Vol. 44, nr. 1 (2014), pp. 23-39
Resumo: We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
Peer review: yes
URI: http://hdl.handle.net/10400.21/5014
ISSN: 1230-3429
Aparece nas colecções:ISEL - Matemática - Artigos



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.