Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/4052
Título: Clustering and selecting categorical features
Autor: Silvestre, Cláudia
Cardoso, Margarida
Figueiredo, Mário
Palavras-chave: Cluster analysis
Finite mixtures models
EM algorithm
Feature selection
Categorical features
Data: Set-2013
Editora: Springer
Citação: Silvestre, Cláudia; Cardoso, Margarida; Figueiredo, Mário - Clustering and Selecting Categorical Features. In Progress in Artificial Intelligence: Lecture Notes in Computer Science: XVI PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE – EPIA 2013, Angra do Heroísmo, (Açores), 09-12 Septemnber 2013, (Volume 8154, 2013, pp 331-342)
Resumo: In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.
Peer review: yes
URI: http://hdl.handle.net/10400.21/4052
DOI: 10.1007/978-3-642-40669-0_29
Versão do Editor: http://link.springer.com/chapter/10.1007%2F978-3-642-40669-0_29
Aparece nas colecções:ESCS - Comunicações

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
RESUMO_Epia2013.doc31,5 kBMicrosoft WordVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.