Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/4048
Título: Determining the number of clusters in categorical data
Autor: Silvestre, Cláudia
Cardoso, Margarida
Figueiredo, Mário
Palavras-chave: Cluster analysis
Model selection
Categorical variables
Data: Jul-2013
Citação: Silvestre, Cláudia; Cardoso, Margarida; Figueiredo, Mário - Determining the Number of Clusters in Categorical Data. In CONFERENCE OF THE INTERNATIONAL FEDERATION OF CLASSICATION SOCIETIES - IFCS-2013, Tilburg, (Netherlands), 14-17 July 2013
Resumo: Cluster analysis for categorical data has been an active area of research. A well-known problem in this area is the determination of the number of clusters, which is unknown and must be inferred from the data. In order to estimate the number of clusters, one often resorts to information criteria, such as BIC (Bayesian information criterion), MML (minimum message length, proposed by Wallace and Boulton, 1968), and ICL (integrated classification likelihood). In this work, we adopt the approach developed by Figueiredo and Jain (2002) for clustering continuous data. They use an MML criterion to select the number of clusters and a variant of the EM algorithm to estimate the model parameters. This EM variant seamlessly integrates model estimation and selection in a single algorithm. For clustering categorical data, we assume a finite mixture of multinomial distributions and implement a new EM algorithm, following a previous version (Silvestre et al., 2008). Results obtained with synthetic datasets are encouraging. The main advantage of the proposed approach, when compared to the above referred criteria, is the speed of execution, which is especially relevant when dealing with large data sets.
Peer review: yes
URI: http://hdl.handle.net/10400.21/4048
Versão do Editor: http://spitswww.uvt.nl/fsw/mto/IFCS2013/Book%20of%20Abstracts.IFCS2013_Final.pdf
Aparece nas colecções:ESCS - Comunicações

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
RESUMO_2013 IFCS CS MC MF resumo.doc26,5 kBMicrosoft WordVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.