Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/3653
Título: Does independent component analysis play a role in unmixing hyperspectral data?
Autor: Nascimento, José M. P.
Bioucas-Dias, José M.
Palavras-chave: Independent component analysis (ICA)
Independent factor analysis (IFA)
Mixture of Gaussians
Unmixing hyperspectral data
Data: Jan-2005
Editora: IEEE
Citação: NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Does independent component analysis play a role in unmixing hyperspectral data?. IEEE Transactions on Geoscience and Remote Sensing. Vol. 43, nr 1 (2005), p. 175-187.
Resumo: Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Peer review: yes
URI: http://hdl.handle.net/10400.21/3653
ISSN: 0196-2892
Versão do Editor: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1381633
Aparece nas colecções:ISEL - Eng. Elect. Tel. Comp. - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Does independent component analysis.pdf956,42 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.