Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/1824
Título: Positive Solutions of the Dirichlet Problem for the One-dimensional Minkowski-Curvature Equation
Autor: Coelho, Isabel
Corsato, Chiara
Obersnel, Franco
Omari, Pierpaolo
Palavras-chave: Quasilinear Ordinary Differential Equation
Minkowski-Curvature
Dirichlet Boundary Conditions
Positive Solution
Existence
Multiplicity
Critical Point Theory
Bifurcation Methods
Lower and Upper Solutions
Data: Ago-2012
Editora: Advanced Nonlinear Studies
Citação: Coelho I, Corsato C, Obersnel F, Omari P. Positive Solutions of the Dirichlet Problem for the One-dimensional Minkowski-Curvature Equation. Advanced Nonlinear Studies. 2012; 3 (12): 621-638.
Resumo: We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Peer review: yes
URI: http://hdl.handle.net/10400.21/1824
ISSN: 1536-1365
Aparece nas colecções:ISEL - Matemática - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Positive Solutions of the Dirichlet Problem for the One.rep.pdf195,56 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.