Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/1766
Título: Effect of the number of shells on the pressure and energy of two-dimensional free bubble clusters
Autor: Vaz, M. Fatima
Teixeira, Paulo Ivo Cortez
Graner, F.
Cox, S. J.
Palavras-chave: Clusters
Surface Evolver
Bubbles
Foams
Data: 20-Jul-2009
Editora: Elsevier Science BV
Citação: Vaz M Fatima, Teixeira P I C, Graner F, Cox S J. Effect of the number of shells on the pressure and energy of two-dimensional free bubble clusters. Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2009: 344 (1-3), 33-36.
Resumo: We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Peer review: yes
URI: http://hdl.handle.net/10400.21/1766
ISSN: 0927-7757
Aparece nas colecções:ISEL - Física - Artigos



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.