Author(s): Oliveira, V (Oliveira, V.); Nunes, B (Nunes, B.); Vilar, R (Vilar, R.)
Title: Wetting response of KrF laser ablated polyimide surfaces
Source: Nuclear Instruments & Methods in Physics Research section B-Beam Interactions with Materials and Atoms, 268 (10): 1626-1630 MAY 15 2010
Language: English
Document Type: Article
Author Keywords: Excimer laser; Polyimide; Microtexturing; Wettability
KeyWords Plus: SUPER-HYDROPHOBIC SURFACES; FEMTOSECOND LASER; SUPERHYDROPHOBIC SURFACES; SILICON; WETTABILITY; IRRADIATION; WATER; TITANIUM; COPPER; LOTUS
Abstract: The wettability of polyimide surfaces microstructured using KrF laser radiation at fluences above the material ablation threshold was studied by static contact angle measurements. The laser-treated surfaces present a morphology consisting of conical features whose dimensions and areal density depend on the fluence. The effect of these parameters on the surface apparent contact angle depends on the wetting regime. When wetting occurs in the homogeneous regime, the apparent contact angle of the treated surfaces increases with the radiation fluence because the cone dimensions increase. In contrast, when wetting occurs in the heterogeneous regime, the apparent contact angle increases with the radiation fluence because the average distance between cones increases. The apparent water contact angle of the laser-treated surfaces can reach values as high as 162 degrees, as compared to 75 degrees for virgin polyimide. (C) 2010 Elsevier B.V. All rights reserved.
Reprint Address: Oliveira, V, Inst Super Engn Lisboa, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal.
E-mail Address: voliveira@dem.isel.ipl.pt; bruno.nunes@ist.utl.pt; rui.vilar@ist.utl.pt
Publisher: ELSEVIER SCIENCE BV
Publisher Address: PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
ISSN: 0168-583X
DOI: 10.1016/j.nimb.2010.03.006
29-char Source Abbrev.: NUCL INSTRUM METH PHYS RES B
ISI Document Delivery No.: 598SE