The nature of the ordered phase of the confined self-assembled rigid rod model

Author(s): Almarza, N. G.
Tavares, J. M.
Telo da Gama, M. M.

Source: Journal of Chemical Physics

Volume: 137 Issue: 7 Article Number: 074901 DOI: 10.1063/1.4745196 Published: Aug 21 2012

Document Type: Article

Language: English

Abstract: We investigate the nature of the ordered phase and the orientational correlations between adjacent layers of the confined three-dimensional self-assembled rigid rod model, on the cubic lattice. We find that the ordered phase at finite temperatures becomes uniaxial in the thermodynamic limit, by contrast to the ground state (partial) order where the orientation of the uncorrelated layers is perpendicular to one of the three lattice directions. The increase of the orientational correlation between layers as the number of layers increases suggests that the unconfined model may also exhibit uniaxial ordering at finite temperatures. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745196]

KeyWords Plus: Living Polymers; Lattice Model

Reprint Address: Almarza, NG (reprint author), CSIC, Inst Quim Fis Rocasolano, Serrano 119, E-28006 Madrid, Spain.

Addresses:
1. CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain
2. Univ Lisbon, Ctr Fis Teor & Comp, P-1649003 Lisbon, Portugal
3. Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
4. Univ Lisbon, Dept Fis, Fac Ciencias, P-1749016 Lisbon, Portugal

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direcccion General de Investigacion Cientifica y Tecnica (DGICYT)</td>
<td>FIS2010-15502</td>
</tr>
<tr>
<td>Direcccion General de Universidades e Investigacion de la Comunidad de Madrid</td>
<td>S2009/ESP-1691</td>
</tr>
</tbody>
</table>
| Portuguese Foundation for Science and Technology (FCT) | PEst-OE/FIS/UI0618/2011
PTDC/FIS/098254/2008 |
Publisher: Amer Inst Physics

Publisher Address: Circulation & Fulfillment Div, 2 Huntington Quadrangle, STE 1 N O 1, Melville, NY 11747-4501 USA

ISSN: 0021-9606