Title: A Step-up mu-Power Converter for Solar Energy Harvesting Applications, using Hill Climbing Maximum Power Point Tracking

Author(s): Carvalho, Carlos1; Lameiro, José; Paulino, Nuno; Lavareda, Guilherme


Pages: 1924-1927 Published: 2011

Document Type: Proceedings Paper

Language: English

Abstract: This paper presents a step-up micro-power converter for solar energy harvesting applications. The circuit uses a SC voltage tripler architecture, controlled by an MPPT circuit based on the Hill Climbing algorithm. This circuit was designed in a 0.13 μm CMOS technology in order to work with an a-Si PV cell. The circuit has a local power supply voltage, created using a scaled down SC voltage tripler, controlled by the same MPPT circuit, to make the circuit robust to load and illumination variations. The SC circuits use a combination of PMOS and NMOS transistors to reduce the occupied area. A charge reuse scheme is used to compensate the large parasitic capacitors associated to the MOS transistors. The simulation results show that the circuit can deliver a power of 1266 μW to the load using 1712 μW of power from the PV cell, corresponding to an efficiency as high as 73.91%. The simulations also show that the circuit is capable of starting up with only 19% of the maximum illumination level.

Reprint Address: Carvalho, C (reprint author), IPL, ISEL, Rua Conselheiro Emídio Navarro 1, P-1959007 Lisbon, Portugal.

Addresses:
1. IPL, ISEL, P-1959007 Lisbon, Portugal

E-mail Address: cfc@isel.pt; nunop@uninova.pt; gal@fct.unl.pt

Publisher: IEEE
Publisher Address: 345 E 47TH ST, New York, 10017 USA

ISSN: 0271-4302