Introduction

Aflatoxin B$_1$ (AFB$_1$) is one of the most deeply studied mycotoxins and belongs to the group of toxins produced by the genus Aspergillus (A. flavus, A. parasiticus, A. nomius). AFB$_1$ has been classified as a human carcinogen (hepatocellular carcinoma) by the International Agency for Research on Cancer with a sufficient evidence in humans and a strong support that main mechanism is genotoxicity.1

Although many literature exists concerning the ingestion of food contaminated with aflatoxin, there are still few studies regarding mycotoxin inhalation in occupational settings. Since mycotoxins are relatively non-volatile, exposure by inhalation is caused by airborne fungal particulates or fungi-contaminated substrates that contain aflatoxin.2

Aim of the Study

To determine occupational exposure to aflatoxin in Portuguese poultry and swine production.

Materials and methods

- Study was carried out in 7 poultry and 7 swine farms located at the district of Lisbon.
- A total of 19 workers (11 swine; 8 poultry) and 30 controls (administrative) provided blood samples. All subjects were protocol informed and signed a consent form.
- Measurement of AFB$_1$ was performed by ELISA (R-Biopharm).
- Serum samples were treated with pronase (Merck), wash in a Column C18 and purification was made with immunoaffinity columns (R.biopharma), specific for AFB$_1$.
- The assay was calibrated with aflatoxin standards ranging from 1 to 50 ng/ml.
- It was applied statistical test (Mann-Whitney) to verified statistical difference in AFB$_1$ results between the two settings.

Results and Discussion

- **Poultry:** <1-3.67 ng/ml/ Swine: < 1-5.96 ng/ml.
- **Controls:**<1 ng/ml.
- Wasn’t found statistical difference between the two settings.
- Results reveal a tendency for poultry workers have higher aflatoxin values - poultry activities are related with higher exposure to particles.3
- Particles presence probably promotes exposure by inhalation: Brera and colleagues (2002) found aflatoxin in airborne dust.4
- Only women’s in both settings have results <1ng/ml - probably due to differences in the activities: men develop tasks with higher dust exposure and physical effort that lead to higher inhalation rates.
- Inhalation should be consider a route of exposure in both settings - experimental and epidemiological evidences to suggest that the lung is, besides liver, a target for AFB$_1$.5,6,7
- Biomarker data obtained give accurate about exposure - allows a focus on the body burden or the total absorbed dose.8

Conclusions

Results obtained suggest that exposure to AFB$_1$ by inhalation occurs and represents an additional risk in both occupational settings that must be recognized, assessed and prevented.

References