Title: Morphological and structural characterization of CrO2/Cr2O3 films grown by laser-CVD

Author(s): Sousa, PM; Silvestre, AJ; Popovici, N; Conde, O

Source: Applied Surface Science


Conference: Spring Meeting of the European-Materials-Research-Society
Location: Strasbourg, France
Date: May 24-28, 2004

Sponsor(s): European Mat Res Soc

Abstract: This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO)(6) in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio Of O-2 to Cr(CO)(6) and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm(-2) and a partial pressure ratio of about 1. (c) 2005 Elsevier B.V. All rights reserved.

Document Type: Article; Proceedings Paper

Language: English

Author Keywords: Laser-Assisted CVD; Photodissociation; CrO2/Cr2O3 Two-Phase System

KeyWords Plus: Chemical-Vapor-Deposition; Chromium-Oxide Films; Thin-Films; Spin Polarization; Point-Contact; Phase-Control; CR(CO)6; CRO2; Photodissociation

Reprint Address: Conde, O (reprint author), Univ Lisbon, Dept Fis, Ed C8,Campo Grande, P-1749016 Lisbon, Portugal.

Addresses:
1. Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
2. Inst Super Engn Lisboa, P-1950062 Lisbon, Portugal

E-mail Address: oconde@fc.ul.pt

Publisher: Elsevier Science BV
Address Publisher: Po Box 211, 1000 AE Amsterdam, Netherlands

IDS Number: 939UQ

ISSN: 0169-4332