Title: Complexes of copper(II) with 3-(ortho-substituted phenylhydrazo)pentane-2,4-diones: syntheses, properties and catalytic activity for cyclohexane oxidation

Author(s): Kopylovich, Maximilian N.¹; Nunes, Andreia C. C.¹; Mahmudov, Kamran T.¹; Haukka, Matti²; Mac Leod, Tatiana C. O.³; Martins, Luisa M. D. R. S.¹;¹; Kuznetsov, Maxim L.¹; Pombeiro, Armando J. L.¹

Source: Dalton Transactions

Volume: 40 Issue: 12 Pages: 2822-2836 DOI: 10.1039/c0dt01527j Published: 2011

Document Type: Article

Language: English

Abstract: Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C[O(CH3)2]2 bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L6)][n] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)][(HL4)(2)]center dot 6H2O 14 and the heteroligand polymer [Cu(mu-L4)(im)][n] 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions.

KeyWords Plus: Mild Peroxidative oxidation; O-2-H2O2-Vanadium Derivative-Pyrazine-2-Carboxylic Acid; Hydrogen-Peroxide; Crystal-Structures; Beta-Diketones; Triethanolamine Complexes; Potential Antineoplastics; Hydrocarbon Oxygenations; Azo Derivatives, Alkanes

Reprint Address: Pombeiro, AJL (reprint author), Univ Tecn Lisboa, Ctr Quim Estrutural, Inst Super Tecn, Complexo 1,Av Rovisco Pais, P-1049001 Lisbon, Portugal.

Addresses:
1. Univ Tecn Lisboa, Ctr Quim Estrutural, Inst Super Tecn, P-1049001 Lisbon, Portugal
2. Univ Joensuu, Dept Chem, FIN-80101 Joensuu, Finland
3. ISEL, Area Dept Engn Quim, P-1059007 Lisbon, Portugal

E-mail Address: pombeiro@ist.utl.pt

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation for Science and Technology (FCT), Portugal</td>
<td></td>
</tr>
<tr>
<td>FEDER</td>
<td></td>
</tr>
</tbody>
</table>

ISEL – Instituto Superior de Engenharia de Lisboa

SDP - Serviço de Documentação e Publicações
Publisher: Royal Soc Chemistry
Publisher Address: Thomas Graham House, Science Park, Milton RD, Cambridge CB4 0WF, Cambs, England
ISSN: 1477-9226